Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidf2a Structured version   Visualization version   GIF version

Theorem cofidf2a 49034
Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidvala.i 𝐼 = (idfunc𝐷)
cofidvala.b 𝐵 = (Base‘𝐷)
cofidvala.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
cofidvala.g (𝜑𝐺 ∈ (𝐸 Func 𝐷))
cofidvala.o (𝜑 → (𝐺func 𝐹) = 𝐼)
cofidvala.h 𝐻 = (Hom ‘𝐷)
cofidf2a.j 𝐽 = (Hom ‘𝐸)
cofidf2a.x (𝜑𝑋𝐵)
cofidf2a.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofidf2a (𝜑 → ((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌)))

Proof of Theorem cofidf2a
StepHypRef Expression
1 cofidvala.b . . . 4 𝐵 = (Base‘𝐷)
2 cofidvala.h . . . 4 𝐻 = (Hom ‘𝐷)
3 cofidf2a.j . . . 4 𝐽 = (Hom ‘𝐸)
4 cofidvala.f . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
54func1st2nd 48993 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
6 cofidf2a.x . . . 4 (𝜑𝑋𝐵)
7 cofidf2a.y . . . 4 (𝜑𝑌𝐵)
81, 2, 3, 5, 6, 7funcf2 17836 . . 3 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
9 cofidvala.o . . . . . 6 (𝜑 → (𝐺func 𝐹) = 𝐼)
109fveq2d 6869 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd𝐼))
1110oveqd 7411 . . . 4 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = (𝑋(2nd𝐼)𝑌))
12 cofidvala.g . . . . 5 (𝜑𝐺 ∈ (𝐸 Func 𝐷))
131, 4, 12, 6, 7cofu2nd 17853 . . . 4 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
14 cofidvala.i . . . . 5 𝐼 = (idfunc𝐷)
155funcrcl2 48996 . . . . 5 (𝜑𝐷 ∈ Cat)
1614, 1, 15, 2, 6, 7idfu2nd 17845 . . . 4 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
1711, 13, 163eqtr3d 2773 . . 3 (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌)))
18 fcof1 7269 . . 3 (((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌))) → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
198, 17, 18syl2anc 584 . 2 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
2014, 1, 6, 4, 12, 9cofid1a 49029 . . . . 5 (𝜑 → ((1st𝐺)‘((1st𝐹)‘𝑋)) = 𝑋)
2114, 1, 7, 4, 12, 9cofid1a 49029 . . . . 5 (𝜑 → ((1st𝐺)‘((1st𝐹)‘𝑌)) = 𝑌)
2220, 21oveq12d 7412 . . . 4 (𝜑 → (((1st𝐺)‘((1st𝐹)‘𝑋))𝐻((1st𝐺)‘((1st𝐹)‘𝑌))) = (𝑋𝐻𝑌))
23 eqid 2730 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2412func1st2nd 48993 . . . . 5 (𝜑 → (1st𝐺)(𝐸 Func 𝐷)(2nd𝐺))
251, 23, 5funcf1 17834 . . . . . 6 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐸))
2625, 6ffvelcdmd 7064 . . . . 5 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝐸))
2725, 7ffvelcdmd 7064 . . . . 5 (𝜑 → ((1st𝐹)‘𝑌) ∈ (Base‘𝐸))
2823, 3, 2, 24, 26, 27funcf2 17836 . . . 4 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(((1st𝐺)‘((1st𝐹)‘𝑋))𝐻((1st𝐺)‘((1st𝐹)‘𝑌))))
2922, 28feq3dd 6682 . . 3 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(𝑋𝐻𝑌))
30 fcofo 7270 . . 3 (((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(𝑋𝐻𝑌) ∧ (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌))) → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))
3129, 8, 17, 30syl3anc 1373 . 2 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))
3219, 31jca 511 1 (𝜑 → ((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   I cid 5540  cres 5648  ccom 5650  wf 6515  1-1wf1 6516  ontowfo 6517  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237   Func cfunc 17822  idfunccidfu 17823  func ccofu 17824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-func 17826  df-idfu 17827  df-cofu 17828
This theorem is referenced by:  cofidf2  49037
  Copyright terms: Public domain W3C validator