Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidf2a Structured version   Visualization version   GIF version

Theorem cofidf2a 49106
Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidvala.i 𝐼 = (idfunc𝐷)
cofidvala.b 𝐵 = (Base‘𝐷)
cofidvala.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
cofidvala.g (𝜑𝐺 ∈ (𝐸 Func 𝐷))
cofidvala.o (𝜑 → (𝐺func 𝐹) = 𝐼)
cofidvala.h 𝐻 = (Hom ‘𝐷)
cofidf2a.j 𝐽 = (Hom ‘𝐸)
cofidf2a.x (𝜑𝑋𝐵)
cofidf2a.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofidf2a (𝜑 → ((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌)))

Proof of Theorem cofidf2a
StepHypRef Expression
1 cofidvala.b . . . 4 𝐵 = (Base‘𝐷)
2 cofidvala.h . . . 4 𝐻 = (Hom ‘𝐷)
3 cofidf2a.j . . . 4 𝐽 = (Hom ‘𝐸)
4 cofidvala.f . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
54func1st2nd 49065 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
6 cofidf2a.x . . . 4 (𝜑𝑋𝐵)
7 cofidf2a.y . . . 4 (𝜑𝑌𝐵)
81, 2, 3, 5, 6, 7funcf2 17830 . . 3 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
9 cofidvala.o . . . . . 6 (𝜑 → (𝐺func 𝐹) = 𝐼)
109fveq2d 6862 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd𝐼))
1110oveqd 7404 . . . 4 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = (𝑋(2nd𝐼)𝑌))
12 cofidvala.g . . . . 5 (𝜑𝐺 ∈ (𝐸 Func 𝐷))
131, 4, 12, 6, 7cofu2nd 17847 . . . 4 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
14 cofidvala.i . . . . 5 𝐼 = (idfunc𝐷)
155funcrcl2 49068 . . . . 5 (𝜑𝐷 ∈ Cat)
1614, 1, 15, 2, 6, 7idfu2nd 17839 . . . 4 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
1711, 13, 163eqtr3d 2772 . . 3 (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌)))
18 fcof1 7262 . . 3 (((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌))) → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
198, 17, 18syl2anc 584 . 2 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
2014, 1, 6, 4, 12, 9cofid1a 49101 . . . . 5 (𝜑 → ((1st𝐺)‘((1st𝐹)‘𝑋)) = 𝑋)
2114, 1, 7, 4, 12, 9cofid1a 49101 . . . . 5 (𝜑 → ((1st𝐺)‘((1st𝐹)‘𝑌)) = 𝑌)
2220, 21oveq12d 7405 . . . 4 (𝜑 → (((1st𝐺)‘((1st𝐹)‘𝑋))𝐻((1st𝐺)‘((1st𝐹)‘𝑌))) = (𝑋𝐻𝑌))
23 eqid 2729 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2412func1st2nd 49065 . . . . 5 (𝜑 → (1st𝐺)(𝐸 Func 𝐷)(2nd𝐺))
251, 23, 5funcf1 17828 . . . . . 6 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐸))
2625, 6ffvelcdmd 7057 . . . . 5 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝐸))
2725, 7ffvelcdmd 7057 . . . . 5 (𝜑 → ((1st𝐹)‘𝑌) ∈ (Base‘𝐸))
2823, 3, 2, 24, 26, 27funcf2 17830 . . . 4 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(((1st𝐺)‘((1st𝐹)‘𝑋))𝐻((1st𝐺)‘((1st𝐹)‘𝑌))))
2922, 28feq3dd 6675 . . 3 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(𝑋𝐻𝑌))
30 fcofo 7263 . . 3 (((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(𝑋𝐻𝑌) ∧ (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌))) → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))
3129, 8, 17, 30syl3anc 1373 . 2 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))
3219, 31jca 511 1 (𝜑 → ((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   I cid 5532  cres 5640  ccom 5642  wf 6507  1-1wf1 6508  ontowfo 6509  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231   Func cfunc 17816  idfunccidfu 17817  func ccofu 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-func 17820  df-idfu 17821  df-cofu 17822
This theorem is referenced by:  cofidf2  49109
  Copyright terms: Public domain W3C validator