Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidf2a Structured version   Visualization version   GIF version

Theorem cofidf2a 49103
Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidvala.i 𝐼 = (idfunc𝐷)
cofidvala.b 𝐵 = (Base‘𝐷)
cofidvala.f (𝜑𝐹 ∈ (𝐷 Func 𝐸))
cofidvala.g (𝜑𝐺 ∈ (𝐸 Func 𝐷))
cofidvala.o (𝜑 → (𝐺func 𝐹) = 𝐼)
cofidvala.h 𝐻 = (Hom ‘𝐷)
cofidf2a.j 𝐽 = (Hom ‘𝐸)
cofidf2a.x (𝜑𝑋𝐵)
cofidf2a.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofidf2a (𝜑 → ((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌)))

Proof of Theorem cofidf2a
StepHypRef Expression
1 cofidvala.b . . . 4 𝐵 = (Base‘𝐷)
2 cofidvala.h . . . 4 𝐻 = (Hom ‘𝐷)
3 cofidf2a.j . . . 4 𝐽 = (Hom ‘𝐸)
4 cofidvala.f . . . . 5 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
54func1st2nd 49062 . . . 4 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
6 cofidf2a.x . . . 4 (𝜑𝑋𝐵)
7 cofidf2a.y . . . 4 (𝜑𝑌𝐵)
81, 2, 3, 5, 6, 7funcf2 17793 . . 3 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
9 cofidvala.o . . . . . 6 (𝜑 → (𝐺func 𝐹) = 𝐼)
109fveq2d 6830 . . . . 5 (𝜑 → (2nd ‘(𝐺func 𝐹)) = (2nd𝐼))
1110oveqd 7370 . . . 4 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = (𝑋(2nd𝐼)𝑌))
12 cofidvala.g . . . . 5 (𝜑𝐺 ∈ (𝐸 Func 𝐷))
131, 4, 12, 6, 7cofu2nd 17810 . . . 4 (𝜑 → (𝑋(2nd ‘(𝐺func 𝐹))𝑌) = ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)))
14 cofidvala.i . . . . 5 𝐼 = (idfunc𝐷)
155funcrcl2 49065 . . . . 5 (𝜑𝐷 ∈ Cat)
1614, 1, 15, 2, 6, 7idfu2nd 17802 . . . 4 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
1711, 13, 163eqtr3d 2772 . . 3 (𝜑 → ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌)))
18 fcof1 7228 . . 3 (((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌))) → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
198, 17, 18syl2anc 584 . 2 (𝜑 → (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)))
2014, 1, 6, 4, 12, 9cofid1a 49098 . . . . 5 (𝜑 → ((1st𝐺)‘((1st𝐹)‘𝑋)) = 𝑋)
2114, 1, 7, 4, 12, 9cofid1a 49098 . . . . 5 (𝜑 → ((1st𝐺)‘((1st𝐹)‘𝑌)) = 𝑌)
2220, 21oveq12d 7371 . . . 4 (𝜑 → (((1st𝐺)‘((1st𝐹)‘𝑋))𝐻((1st𝐺)‘((1st𝐹)‘𝑌))) = (𝑋𝐻𝑌))
23 eqid 2729 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2412func1st2nd 49062 . . . . 5 (𝜑 → (1st𝐺)(𝐸 Func 𝐷)(2nd𝐺))
251, 23, 5funcf1 17791 . . . . . 6 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝐸))
2625, 6ffvelcdmd 7023 . . . . 5 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝐸))
2725, 7ffvelcdmd 7023 . . . . 5 (𝜑 → ((1st𝐹)‘𝑌) ∈ (Base‘𝐸))
2823, 3, 2, 24, 26, 27funcf2 17793 . . . 4 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(((1st𝐺)‘((1st𝐹)‘𝑋))𝐻((1st𝐺)‘((1st𝐹)‘𝑌))))
2922, 28feq3dd 6643 . . 3 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(𝑋𝐻𝑌))
30 fcofo 7229 . . 3 (((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))⟶(𝑋𝐻𝑌) ∧ (𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)⟶(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ ((((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)) ∘ (𝑋(2nd𝐹)𝑌)) = ( I ↾ (𝑋𝐻𝑌))) → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))
3129, 8, 17, 30syl3anc 1373 . 2 (𝜑 → (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌))
3219, 31jca 511 1 (𝜑 → ((𝑋(2nd𝐹)𝑌):(𝑋𝐻𝑌)–1-1→(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌)) ∧ (((1st𝐹)‘𝑋)(2nd𝐺)((1st𝐹)‘𝑌)):(((1st𝐹)‘𝑋)𝐽((1st𝐹)‘𝑌))–onto→(𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   I cid 5517  cres 5625  ccom 5627  wf 6482  1-1wf1 6483  ontowfo 6484  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Hom chom 17190   Func cfunc 17779  idfunccidfu 17780  func ccofu 17781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-func 17783  df-idfu 17784  df-cofu 17785
This theorem is referenced by:  cofidf2  49106
  Copyright terms: Public domain W3C validator