MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12d Structured version   Visualization version   GIF version

Theorem feq12d 6723
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq12d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))

Proof of Theorem feq12d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21feq1d 6719 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐴𝐶))
3 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43feq2d 6721 . 2 (𝜑 → (𝐺:𝐴𝐶𝐺:𝐵𝐶))
52, 4bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wf 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-fun 6562  df-fn 6563  df-f 6564
This theorem is referenced by:  feq123d  6724  fprg  7174  smoeq  8391  oif  9571  1fv  13688  catcisolem  18156  hofcl  18305  dmdprd  20019  dpjf  20078  pjf2  21735  mat1dimmul  22483  lmbr2  23268  lmff  23310  dfac14  23627  lmmbr2  25294  lmcau  25348  perfdvf  25939  dvnfre  25991  dvle  26047  dvfsumle  26061  dvfsumleOLD  26062  dvfsumge  26063  dvmptrecl  26065  uhgr0e  29089  uhgrstrrepe  29096  incistruhgr  29097  upgr1e  29131  1hevtxdg1  29525  umgr2v2e  29544  iswlk  29629  0wlkons1  30141  resf1o  32742  ismeas  34201  omsmeas  34326  breprexplema  34646  satfun  35417  mbfresfi  37674  sdclem1  37751  dfac21  43083  fnlimfvre  45694  climrescn  45768  fourierdlem74  46200  fourierdlem103  46229  fourierdlem104  46230  sge0iunmpt  46438  ismea  46471  isome  46514  sssmf  46758  smflimlem3  46793  smflimlem4  46794  isupwlk  48057  fmpodg  48775  fucof1  49040
  Copyright terms: Public domain W3C validator