| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | feq1d 6633 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
| 3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | feq2d 6635 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: feq123d 6640 fprg 7088 smoeq 8270 oif 9416 1fv 13544 catcisolem 18014 hofcl 18162 dmdprd 19910 dpjf 19969 pjf2 21649 mat1dimmul 22389 lmbr2 23172 lmff 23214 dfac14 23531 lmmbr2 25184 lmcau 25238 perfdvf 25829 dvnfre 25881 dvle 25937 dvfsumle 25951 dvfsumleOLD 25952 dvfsumge 25953 dvmptrecl 25955 uhgr0e 29047 uhgrstrrepe 29054 incistruhgr 29055 upgr1e 29089 1hevtxdg1 29483 umgr2v2e 29502 iswlk 29587 0wlkons1 30096 resf1o 32708 ismeas 34207 omsmeas 34331 breprexplema 34638 satfun 35443 mbfresfi 37705 sdclem1 37782 dfac21 43098 fnlimfvre 45711 climrescn 45785 fourierdlem74 46217 fourierdlem103 46246 fourierdlem104 46247 sge0iunmpt 46455 ismea 46488 isome 46531 sssmf 46775 smflimlem3 46810 smflimlem4 46811 isupwlk 48166 fmpodg 48899 fucof1 49353 |
| Copyright terms: Public domain | W3C validator |