![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | feq1d 6721 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | feq2d 6723 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: feq123d 6726 fprg 7175 smoeq 8389 oif 9568 1fv 13684 catcisolem 18164 hofcl 18316 dmdprd 20033 dpjf 20092 pjf2 21752 mat1dimmul 22498 lmbr2 23283 lmff 23325 dfac14 23642 lmmbr2 25307 lmcau 25361 perfdvf 25953 dvnfre 26005 dvle 26061 dvfsumle 26075 dvfsumleOLD 26076 dvfsumge 26077 dvmptrecl 26079 uhgr0e 29103 uhgrstrrepe 29110 incistruhgr 29111 upgr1e 29145 1hevtxdg1 29539 umgr2v2e 29558 iswlk 29643 0wlkons1 30150 resf1o 32748 ismeas 34180 omsmeas 34305 breprexplema 34624 satfun 35396 mbfresfi 37653 sdclem1 37730 dfac21 43055 fnlimfvre 45630 climrescn 45704 fourierdlem74 46136 fourierdlem103 46165 fourierdlem104 46166 sge0iunmpt 46374 ismea 46407 isome 46450 sssmf 46694 smflimlem3 46729 smflimlem4 46730 isupwlk 47980 |
Copyright terms: Public domain | W3C validator |