| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | feq1d 6670 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
| 3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | feq2d 6672 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: feq123d 6677 fprg 7127 smoeq 8319 oif 9483 1fv 13608 catcisolem 18072 hofcl 18220 dmdprd 19930 dpjf 19989 pjf2 21623 mat1dimmul 22363 lmbr2 23146 lmff 23188 dfac14 23505 lmmbr2 25159 lmcau 25213 perfdvf 25804 dvnfre 25856 dvle 25912 dvfsumle 25926 dvfsumleOLD 25927 dvfsumge 25928 dvmptrecl 25930 uhgr0e 28998 uhgrstrrepe 29005 incistruhgr 29006 upgr1e 29040 1hevtxdg1 29434 umgr2v2e 29453 iswlk 29538 0wlkons1 30050 resf1o 32653 ismeas 34189 omsmeas 34314 breprexplema 34621 satfun 35398 mbfresfi 37660 sdclem1 37737 dfac21 43055 fnlimfvre 45672 climrescn 45746 fourierdlem74 46178 fourierdlem103 46207 fourierdlem104 46208 sge0iunmpt 46416 ismea 46449 isome 46492 sssmf 46736 smflimlem3 46771 smflimlem4 46772 isupwlk 48124 fmpodg 48857 fucof1 49311 |
| Copyright terms: Public domain | W3C validator |