| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | feq1d 6673 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
| 3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | feq2d 6675 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: feq123d 6680 fprg 7130 smoeq 8322 oif 9490 1fv 13615 catcisolem 18079 hofcl 18227 dmdprd 19937 dpjf 19996 pjf2 21630 mat1dimmul 22370 lmbr2 23153 lmff 23195 dfac14 23512 lmmbr2 25166 lmcau 25220 perfdvf 25811 dvnfre 25863 dvle 25919 dvfsumle 25933 dvfsumleOLD 25934 dvfsumge 25935 dvmptrecl 25937 uhgr0e 29005 uhgrstrrepe 29012 incistruhgr 29013 upgr1e 29047 1hevtxdg1 29441 umgr2v2e 29460 iswlk 29545 0wlkons1 30057 resf1o 32660 ismeas 34196 omsmeas 34321 breprexplema 34628 satfun 35405 mbfresfi 37667 sdclem1 37744 dfac21 43062 fnlimfvre 45679 climrescn 45753 fourierdlem74 46185 fourierdlem103 46214 fourierdlem104 46215 sge0iunmpt 46423 ismea 46456 isome 46499 sssmf 46743 smflimlem3 46778 smflimlem4 46779 isupwlk 48128 fmpodg 48861 fucof1 49315 |
| Copyright terms: Public domain | W3C validator |