MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12d Structured version   Visualization version   GIF version

Theorem feq12d 6735
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq12d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))

Proof of Theorem feq12d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21feq1d 6732 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐴𝐶))
3 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43feq2d 6733 . 2 (𝜑 → (𝐺:𝐴𝐶𝐺:𝐵𝐶))
52, 4bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  feq123d  6736  fprg  7189  smoeq  8406  oif  9599  1fv  13704  catcisolem  18177  hofcl  18329  dmdprd  20042  dpjf  20101  pjf2  21757  mat1dimmul  22503  lmbr2  23288  lmff  23330  dfac14  23647  lmmbr2  25312  lmcau  25366  perfdvf  25958  dvnfre  26010  dvle  26066  dvfsumle  26080  dvfsumleOLD  26081  dvfsumge  26082  dvmptrecl  26084  uhgr0e  29106  uhgrstrrepe  29113  incistruhgr  29114  upgr1e  29148  1hevtxdg1  29542  umgr2v2e  29561  iswlk  29646  0wlkons1  30153  resf1o  32744  ismeas  34163  omsmeas  34288  breprexplema  34607  satfun  35379  mbfresfi  37626  sdclem1  37703  dfac21  43023  fnlimfvre  45595  climrescn  45669  fourierdlem74  46101  fourierdlem103  46130  fourierdlem104  46131  sge0iunmpt  46339  ismea  46372  isome  46415  sssmf  46659  smflimlem3  46694  smflimlem4  46695  isupwlk  47859
  Copyright terms: Public domain W3C validator