MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12d Structured version   Visualization version   GIF version

Theorem feq12d 6676
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq12d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))

Proof of Theorem feq12d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21feq1d 6670 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐴𝐶))
3 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43feq2d 6672 . 2 (𝜑 → (𝐺:𝐴𝐶𝐺:𝐵𝐶))
52, 4bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  feq123d  6677  fprg  7127  smoeq  8319  oif  9483  1fv  13608  catcisolem  18072  hofcl  18220  dmdprd  19930  dpjf  19989  pjf2  21623  mat1dimmul  22363  lmbr2  23146  lmff  23188  dfac14  23505  lmmbr2  25159  lmcau  25213  perfdvf  25804  dvnfre  25856  dvle  25912  dvfsumle  25926  dvfsumleOLD  25927  dvfsumge  25928  dvmptrecl  25930  uhgr0e  28998  uhgrstrrepe  29005  incistruhgr  29006  upgr1e  29040  1hevtxdg1  29434  umgr2v2e  29453  iswlk  29538  0wlkons1  30050  resf1o  32653  ismeas  34189  omsmeas  34314  breprexplema  34621  satfun  35398  mbfresfi  37660  sdclem1  37737  dfac21  43055  fnlimfvre  45672  climrescn  45746  fourierdlem74  46178  fourierdlem103  46207  fourierdlem104  46208  sge0iunmpt  46416  ismea  46449  isome  46492  sssmf  46736  smflimlem3  46771  smflimlem4  46772  isupwlk  48124  fmpodg  48857  fucof1  49311
  Copyright terms: Public domain W3C validator