![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | feq1d 6732 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | feq2d 6733 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: feq123d 6736 fprg 7189 smoeq 8406 oif 9599 1fv 13704 catcisolem 18177 hofcl 18329 dmdprd 20042 dpjf 20101 pjf2 21757 mat1dimmul 22503 lmbr2 23288 lmff 23330 dfac14 23647 lmmbr2 25312 lmcau 25366 perfdvf 25958 dvnfre 26010 dvle 26066 dvfsumle 26080 dvfsumleOLD 26081 dvfsumge 26082 dvmptrecl 26084 uhgr0e 29106 uhgrstrrepe 29113 incistruhgr 29114 upgr1e 29148 1hevtxdg1 29542 umgr2v2e 29561 iswlk 29646 0wlkons1 30153 resf1o 32744 ismeas 34163 omsmeas 34288 breprexplema 34607 satfun 35379 mbfresfi 37626 sdclem1 37703 dfac21 43023 fnlimfvre 45595 climrescn 45669 fourierdlem74 46101 fourierdlem103 46130 fourierdlem104 46131 sge0iunmpt 46339 ismea 46372 isome 46415 sssmf 46659 smflimlem3 46694 smflimlem4 46695 isupwlk 47859 |
Copyright terms: Public domain | W3C validator |