| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | feq1d 6638 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
| 3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | feq2d 6640 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: feq123d 6645 fprg 7093 smoeq 8280 oif 9441 1fv 13568 catcisolem 18035 hofcl 18183 dmdprd 19897 dpjf 19956 pjf2 21639 mat1dimmul 22379 lmbr2 23162 lmff 23204 dfac14 23521 lmmbr2 25175 lmcau 25229 perfdvf 25820 dvnfre 25872 dvle 25928 dvfsumle 25942 dvfsumleOLD 25943 dvfsumge 25944 dvmptrecl 25946 uhgr0e 29034 uhgrstrrepe 29041 incistruhgr 29042 upgr1e 29076 1hevtxdg1 29470 umgr2v2e 29489 iswlk 29574 0wlkons1 30083 resf1o 32686 ismeas 34165 omsmeas 34290 breprexplema 34597 satfun 35383 mbfresfi 37645 sdclem1 37722 dfac21 43039 fnlimfvre 45656 climrescn 45730 fourierdlem74 46162 fourierdlem103 46191 fourierdlem104 46192 sge0iunmpt 46400 ismea 46433 isome 46476 sssmf 46720 smflimlem3 46755 smflimlem4 46756 isupwlk 48121 fmpodg 48854 fucof1 49308 |
| Copyright terms: Public domain | W3C validator |