| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | feq1d 6638 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
| 3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | feq2d 6640 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: feq123d 6645 fprg 7094 smoeq 8276 oif 9423 1fv 13549 catcisolem 18019 hofcl 18167 dmdprd 19914 dpjf 19973 pjf2 21653 mat1dimmul 22392 lmbr2 23175 lmff 23217 dfac14 23534 lmmbr2 25187 lmcau 25241 perfdvf 25832 dvnfre 25884 dvle 25940 dvfsumle 25954 dvfsumleOLD 25955 dvfsumge 25956 dvmptrecl 25958 uhgr0e 29051 uhgrstrrepe 29058 incistruhgr 29059 upgr1e 29093 1hevtxdg1 29487 umgr2v2e 29506 iswlk 29591 0wlkons1 30103 resf1o 32717 ismeas 34233 omsmeas 34357 breprexplema 34664 satfun 35476 mbfresfi 37726 sdclem1 37803 dfac21 43183 fnlimfvre 45796 climrescn 45870 fourierdlem74 46302 fourierdlem103 46331 fourierdlem104 46332 sge0iunmpt 46540 ismea 46573 isome 46616 sssmf 46860 smflimlem3 46895 smflimlem4 46896 isupwlk 48260 fmpodg 48993 fucof1 49447 |
| Copyright terms: Public domain | W3C validator |