MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq12d Structured version   Visualization version   GIF version

Theorem feq12d 6639
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
feq12d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))

Proof of Theorem feq12d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21feq1d 6633 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐴𝐶))
3 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43feq2d 6635 . 2 (𝜑 → (𝐺:𝐴𝐶𝐺:𝐵𝐶))
52, 4bitrd 279 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  feq123d  6640  fprg  7088  smoeq  8270  oif  9416  1fv  13544  catcisolem  18014  hofcl  18162  dmdprd  19910  dpjf  19969  pjf2  21649  mat1dimmul  22389  lmbr2  23172  lmff  23214  dfac14  23531  lmmbr2  25184  lmcau  25238  perfdvf  25829  dvnfre  25881  dvle  25937  dvfsumle  25951  dvfsumleOLD  25952  dvfsumge  25953  dvmptrecl  25955  uhgr0e  29047  uhgrstrrepe  29054  incistruhgr  29055  upgr1e  29089  1hevtxdg1  29483  umgr2v2e  29502  iswlk  29587  0wlkons1  30096  resf1o  32708  ismeas  34207  omsmeas  34331  breprexplema  34638  satfun  35443  mbfresfi  37705  sdclem1  37782  dfac21  43098  fnlimfvre  45711  climrescn  45785  fourierdlem74  46217  fourierdlem103  46246  fourierdlem104  46247  sge0iunmpt  46455  ismea  46488  isome  46531  sssmf  46775  smflimlem3  46810  smflimlem4  46811  isupwlk  48166  fmpodg  48899  fucof1  49353
  Copyright terms: Public domain W3C validator