| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | feq1d 6695 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
| 3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | feq2d 6697 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: feq123d 6700 fprg 7150 smoeq 8369 oif 9549 1fv 13669 catcisolem 18128 hofcl 18276 dmdprd 19986 dpjf 20045 pjf2 21679 mat1dimmul 22419 lmbr2 23202 lmff 23244 dfac14 23561 lmmbr2 25216 lmcau 25270 perfdvf 25861 dvnfre 25913 dvle 25969 dvfsumle 25983 dvfsumleOLD 25984 dvfsumge 25985 dvmptrecl 25987 uhgr0e 29055 uhgrstrrepe 29062 incistruhgr 29063 upgr1e 29097 1hevtxdg1 29491 umgr2v2e 29510 iswlk 29595 0wlkons1 30107 resf1o 32712 ismeas 34235 omsmeas 34360 breprexplema 34667 satfun 35438 mbfresfi 37695 sdclem1 37772 dfac21 43065 fnlimfvre 45683 climrescn 45757 fourierdlem74 46189 fourierdlem103 46218 fourierdlem104 46219 sge0iunmpt 46427 ismea 46460 isome 46503 sssmf 46747 smflimlem3 46782 smflimlem4 46783 isupwlk 48091 fmpodg 48824 fucof1 49213 |
| Copyright terms: Public domain | W3C validator |