| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| feq12d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | feq1d 6719 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐴⟶𝐶)) |
| 3 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | feq2d 6721 | . 2 ⊢ (𝜑 → (𝐺:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 5 | 2, 4 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ⟶wf 6556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-fun 6562 df-fn 6563 df-f 6564 |
| This theorem is referenced by: feq123d 6724 fprg 7174 smoeq 8391 oif 9571 1fv 13688 catcisolem 18156 hofcl 18305 dmdprd 20019 dpjf 20078 pjf2 21735 mat1dimmul 22483 lmbr2 23268 lmff 23310 dfac14 23627 lmmbr2 25294 lmcau 25348 perfdvf 25939 dvnfre 25991 dvle 26047 dvfsumle 26061 dvfsumleOLD 26062 dvfsumge 26063 dvmptrecl 26065 uhgr0e 29089 uhgrstrrepe 29096 incistruhgr 29097 upgr1e 29131 1hevtxdg1 29525 umgr2v2e 29544 iswlk 29629 0wlkons1 30141 resf1o 32742 ismeas 34201 omsmeas 34326 breprexplema 34646 satfun 35417 mbfresfi 37674 sdclem1 37751 dfac21 43083 fnlimfvre 45694 climrescn 45768 fourierdlem74 46200 fourierdlem103 46229 fourierdlem104 46230 sge0iunmpt 46438 ismea 46471 isome 46514 sssmf 46758 smflimlem3 46793 smflimlem4 46794 isupwlk 48057 fmpodg 48775 fucof1 49040 |
| Copyright terms: Public domain | W3C validator |