![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege85 | Structured version Visualization version GIF version |
Description: Commuted form of frege77 43248. Proposition 85 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege84.x | ⊢ 𝑋 ∈ 𝑈 |
frege84.y | ⊢ 𝑌 ∈ 𝑉 |
frege84.r | ⊢ 𝑅 ∈ 𝑊 |
frege84.a | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
frege85 | ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege84.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
2 | frege84.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
3 | frege84.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
4 | frege84.a | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
5 | 1, 2, 3, 4 | frege77 43248 | . 2 ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → 𝑌 ∈ 𝐴))) |
6 | frege12 43121 | . 2 ⊢ ((𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → 𝑌 ∈ 𝐴))) → (𝑋(t+‘𝑅)𝑌 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴)))) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6536 t+ctcl 14936 hereditary whe 43080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-frege1 43098 ax-frege2 43099 ax-frege8 43117 ax-frege52a 43165 ax-frege58b 43209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-seq 13970 df-trcl 14938 df-relexp 14971 df-he 43081 |
This theorem is referenced by: frege86 43257 |
Copyright terms: Public domain | W3C validator |