Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege60c Structured version   Visualization version   GIF version

Theorem frege60c 39057
Description: Swap antecedents of frege58c 39055. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
frege59c.a 𝐴𝐵
Assertion
Ref Expression
frege60c (∀𝑥(𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))

Proof of Theorem frege60c
StepHypRef Expression
1 frege59c.a . . . 4 𝐴𝐵
21frege58c 39055 . . 3 (∀𝑥(𝜑 → (𝜓𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒)))
3 sbcim1 3709 . . . 4 ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)))
4 sbcim1 3709 . . . 4 ([𝐴 / 𝑥](𝜓𝜒) → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
53, 4syl6 35 . . 3 ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
62, 5syl 17 . 2 (∀𝑥(𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
7 frege12 38947 . 2 ((∀𝑥(𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))) → (∀𝑥(𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒))))
86, 7ax-mp 5 1 (∀𝑥(𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1656  wcel 2166  [wsbc 3662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-12 2222  ax-13 2391  ax-ext 2803  ax-frege1 38924  ax-frege2 38925  ax-frege8 38943  ax-frege58b 39035
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-v 3416  df-sbc 3663
This theorem is referenced by:  frege93  39090
  Copyright terms: Public domain W3C validator