![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege92 | Structured version Visualization version GIF version |
Description: Inference from frege91 43415. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege92 | ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.x | . 2 ⊢ 𝑋 ∈ 𝑈 | |
2 | vex 3477 | . . . . 5 ⊢ 𝑤 ∈ V | |
3 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
4 | frege91.r | . . . . 5 ⊢ 𝑅 ∈ 𝑊 | |
5 | 2, 3, 4 | frege91 43415 | . . . 4 ⊢ (𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) |
6 | 5 | sbcth 3793 | . . 3 ⊢ (𝑋 ∈ 𝑈 → [𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) |
7 | frege53c 43375 | . . 3 ⊢ ([𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝑈 → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) |
9 | sbcim1 3835 | . . . 4 ⊢ ([𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)) | |
10 | 9 | imim2i 16 | . . 3 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))) |
11 | dfsbcq 3780 | . . . . 5 ⊢ (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ [𝑍 / 𝑤]𝑤𝑅𝑌)) | |
12 | sbcbr1g 5209 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ ⦋𝑋 / 𝑤⦌𝑤𝑅𝑌)) | |
13 | csbvarg 4435 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑈 → ⦋𝑋 / 𝑤⦌𝑤 = 𝑋) | |
14 | 13 | breq1d 5162 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → (⦋𝑋 / 𝑤⦌𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
15 | 12, 14 | bitrd 278 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
16 | 1, 15 | ax-mp 5 | . . . . 5 ⊢ ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌) |
17 | 11, 16 | bitr3di 285 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
18 | eqcom 2735 | . . . . . . 7 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
19 | 18 | biimpi 215 | . . . . . 6 ⊢ (𝑋 = 𝑍 → 𝑍 = 𝑋) |
20 | 19, 1 | eqeltrdi 2837 | . . . . 5 ⊢ (𝑋 = 𝑍 → 𝑍 ∈ 𝑈) |
21 | sbcbr1g 5209 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ ⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌)) | |
22 | csbvarg 4435 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑈 → ⦋𝑍 / 𝑤⦌𝑤 = 𝑍) | |
23 | 22 | breq1d 5162 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → (⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
24 | 21, 23 | bitrd 278 | . . . . 5 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
25 | 20, 24 | syl 17 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
26 | 17, 25 | imbi12d 343 | . . 3 ⊢ (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
27 | 10, 26 | mpbidi 240 | . 2 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
28 | 1, 8, 27 | mp2b 10 | 1 ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3473 [wsbc 3778 ⦋csb 3894 class class class wbr 5152 ‘cfv 6553 t+ctcl 14972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-frege1 43251 ax-frege2 43252 ax-frege8 43270 ax-frege52a 43318 ax-frege52c 43349 ax-frege58b 43362 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-seq 14007 df-trcl 14974 df-relexp 15007 df-he 43234 |
This theorem is referenced by: frege102 43426 |
Copyright terms: Public domain | W3C validator |