Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege92 Structured version   Visualization version   GIF version

Theorem frege92 43968
Description: Inference from frege91 43967. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege92 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))

Proof of Theorem frege92
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 frege91.x . 2 𝑋𝑈
2 vex 3484 . . . . 5 𝑤 ∈ V
3 frege91.y . . . . 5 𝑌𝑉
4 frege91.r . . . . 5 𝑅𝑊
52, 3, 4frege91 43967 . . . 4 (𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)
65sbcth 3803 . . 3 (𝑋𝑈[𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌))
7 frege53c 43927 . . 3 ([𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
86, 7syl 17 . 2 (𝑋𝑈 → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
9 sbcim1 3842 . . . 4 ([𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))
109imim2i 16 . . 3 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)))
11 dfsbcq 3790 . . . . 5 (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤𝑅𝑌))
12 sbcbr1g 5200 . . . . . . 7 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋 / 𝑤𝑤𝑅𝑌))
13 csbvarg 4434 . . . . . . . 8 (𝑋𝑈𝑋 / 𝑤𝑤 = 𝑋)
1413breq1d 5153 . . . . . . 7 (𝑋𝑈 → (𝑋 / 𝑤𝑤𝑅𝑌𝑋𝑅𝑌))
1512, 14bitrd 279 . . . . . 6 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
161, 15ax-mp 5 . . . . 5 ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌)
1711, 16bitr3di 286 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
18 eqcom 2744 . . . . . . 7 (𝑋 = 𝑍𝑍 = 𝑋)
1918biimpi 216 . . . . . 6 (𝑋 = 𝑍𝑍 = 𝑋)
2019, 1eqeltrdi 2849 . . . . 5 (𝑋 = 𝑍𝑍𝑈)
21 sbcbr1g 5200 . . . . . 6 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍 / 𝑤𝑤(t+‘𝑅)𝑌))
22 csbvarg 4434 . . . . . . 7 (𝑍𝑈𝑍 / 𝑤𝑤 = 𝑍)
2322breq1d 5153 . . . . . 6 (𝑍𝑈 → (𝑍 / 𝑤𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2421, 23bitrd 279 . . . . 5 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2520, 24syl 17 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2617, 25imbi12d 344 . . 3 (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
2710, 26mpbidi 241 . 2 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
281, 8, 27mp2b 10 1 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  Vcvv 3480  [wsbc 3788  csb 3899   class class class wbr 5143  cfv 6561  t+ctcl 15024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-frege1 43803  ax-frege2 43804  ax-frege8 43822  ax-frege52a 43870  ax-frege52c 43901  ax-frege58b 43914
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-trcl 15026  df-relexp 15059  df-he 43786
This theorem is referenced by:  frege102  43978
  Copyright terms: Public domain W3C validator