![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege92 | Structured version Visualization version GIF version |
Description: Inference from frege91 43944. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege92 | ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.x | . 2 ⊢ 𝑋 ∈ 𝑈 | |
2 | vex 3482 | . . . . 5 ⊢ 𝑤 ∈ V | |
3 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
4 | frege91.r | . . . . 5 ⊢ 𝑅 ∈ 𝑊 | |
5 | 2, 3, 4 | frege91 43944 | . . . 4 ⊢ (𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) |
6 | 5 | sbcth 3806 | . . 3 ⊢ (𝑋 ∈ 𝑈 → [𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) |
7 | frege53c 43904 | . . 3 ⊢ ([𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝑈 → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) |
9 | sbcim1 3848 | . . . 4 ⊢ ([𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)) | |
10 | 9 | imim2i 16 | . . 3 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))) |
11 | dfsbcq 3793 | . . . . 5 ⊢ (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ [𝑍 / 𝑤]𝑤𝑅𝑌)) | |
12 | sbcbr1g 5205 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ ⦋𝑋 / 𝑤⦌𝑤𝑅𝑌)) | |
13 | csbvarg 4440 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑈 → ⦋𝑋 / 𝑤⦌𝑤 = 𝑋) | |
14 | 13 | breq1d 5158 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → (⦋𝑋 / 𝑤⦌𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
15 | 12, 14 | bitrd 279 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
16 | 1, 15 | ax-mp 5 | . . . . 5 ⊢ ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌) |
17 | 11, 16 | bitr3di 286 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
18 | eqcom 2742 | . . . . . . 7 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
19 | 18 | biimpi 216 | . . . . . 6 ⊢ (𝑋 = 𝑍 → 𝑍 = 𝑋) |
20 | 19, 1 | eqeltrdi 2847 | . . . . 5 ⊢ (𝑋 = 𝑍 → 𝑍 ∈ 𝑈) |
21 | sbcbr1g 5205 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ ⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌)) | |
22 | csbvarg 4440 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑈 → ⦋𝑍 / 𝑤⦌𝑤 = 𝑍) | |
23 | 22 | breq1d 5158 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → (⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
24 | 21, 23 | bitrd 279 | . . . . 5 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
25 | 20, 24 | syl 17 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
26 | 17, 25 | imbi12d 344 | . . 3 ⊢ (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
27 | 10, 26 | mpbidi 241 | . 2 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
28 | 1, 8, 27 | mp2b 10 | 1 ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 Vcvv 3478 [wsbc 3791 ⦋csb 3908 class class class wbr 5148 ‘cfv 6563 t+ctcl 15021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-frege1 43780 ax-frege2 43781 ax-frege8 43799 ax-frege52a 43847 ax-frege52c 43878 ax-frege58b 43891 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-trcl 15023 df-relexp 15056 df-he 43763 |
This theorem is referenced by: frege102 43955 |
Copyright terms: Public domain | W3C validator |