Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege92 Structured version   Visualization version   GIF version

Theorem frege92 39205
 Description: Inference from frege91 39204. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege92 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))

Proof of Theorem frege92
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 frege91.x . 2 𝑋𝑈
2 vex 3401 . . . . 5 𝑤 ∈ V
3 frege91.y . . . . 5 𝑌𝑉
4 frege91.r . . . . 5 𝑅𝑊
52, 3, 4frege91 39204 . . . 4 (𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)
65sbcth 3667 . . 3 (𝑋𝑈[𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌))
7 frege53c 39164 . . 3 ([𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
86, 7syl 17 . 2 (𝑋𝑈 → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
9 sbcim1 3700 . . . 4 ([𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))
109imim2i 16 . . 3 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)))
11 sbcbr1g 4943 . . . . . . 7 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋 / 𝑤𝑤𝑅𝑌))
12 csbvarg 4228 . . . . . . . 8 (𝑋𝑈𝑋 / 𝑤𝑤 = 𝑋)
1312breq1d 4896 . . . . . . 7 (𝑋𝑈 → (𝑋 / 𝑤𝑤𝑅𝑌𝑋𝑅𝑌))
1411, 13bitrd 271 . . . . . 6 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
151, 14ax-mp 5 . . . . 5 ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌)
16 dfsbcq 3654 . . . . 5 (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤𝑅𝑌))
1715, 16syl5rbbr 278 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
18 eqcom 2785 . . . . . . 7 (𝑋 = 𝑍𝑍 = 𝑋)
1918biimpi 208 . . . . . 6 (𝑋 = 𝑍𝑍 = 𝑋)
2019, 1syl6eqel 2867 . . . . 5 (𝑋 = 𝑍𝑍𝑈)
21 sbcbr1g 4943 . . . . . 6 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍 / 𝑤𝑤(t+‘𝑅)𝑌))
22 csbvarg 4228 . . . . . . 7 (𝑍𝑈𝑍 / 𝑤𝑤 = 𝑍)
2322breq1d 4896 . . . . . 6 (𝑍𝑈 → (𝑍 / 𝑤𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2421, 23bitrd 271 . . . . 5 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2520, 24syl 17 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2617, 25imbi12d 336 . . 3 (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
2710, 26mpbidi 233 . 2 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
281, 8, 27mp2b 10 1 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   = wceq 1601   ∈ wcel 2107  Vcvv 3398  [wsbc 3652  ⦋csb 3751   class class class wbr 4886  ‘cfv 6135  t+ctcl 14133 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-frege1 39040  ax-frege2 39041  ax-frege8 39059  ax-frege52a 39107  ax-frege52c 39138  ax-frege58b 39151 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ifp 1047  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-seq 13120  df-trcl 14135  df-relexp 14168  df-he 39023 This theorem is referenced by:  frege102  39215
 Copyright terms: Public domain W3C validator