![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege92 | Structured version Visualization version GIF version |
Description: Inference from frege91 42638. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege92 | ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.x | . 2 ⊢ 𝑋 ∈ 𝑈 | |
2 | vex 3479 | . . . . 5 ⊢ 𝑤 ∈ V | |
3 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
4 | frege91.r | . . . . 5 ⊢ 𝑅 ∈ 𝑊 | |
5 | 2, 3, 4 | frege91 42638 | . . . 4 ⊢ (𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) |
6 | 5 | sbcth 3791 | . . 3 ⊢ (𝑋 ∈ 𝑈 → [𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) |
7 | frege53c 42598 | . . 3 ⊢ ([𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝑈 → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) |
9 | sbcim1 3832 | . . . 4 ⊢ ([𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)) | |
10 | 9 | imim2i 16 | . . 3 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))) |
11 | dfsbcq 3778 | . . . . 5 ⊢ (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ [𝑍 / 𝑤]𝑤𝑅𝑌)) | |
12 | sbcbr1g 5204 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ ⦋𝑋 / 𝑤⦌𝑤𝑅𝑌)) | |
13 | csbvarg 4430 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑈 → ⦋𝑋 / 𝑤⦌𝑤 = 𝑋) | |
14 | 13 | breq1d 5157 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → (⦋𝑋 / 𝑤⦌𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
15 | 12, 14 | bitrd 279 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
16 | 1, 15 | ax-mp 5 | . . . . 5 ⊢ ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌) |
17 | 11, 16 | bitr3di 286 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
18 | eqcom 2740 | . . . . . . 7 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
19 | 18 | biimpi 215 | . . . . . 6 ⊢ (𝑋 = 𝑍 → 𝑍 = 𝑋) |
20 | 19, 1 | eqeltrdi 2842 | . . . . 5 ⊢ (𝑋 = 𝑍 → 𝑍 ∈ 𝑈) |
21 | sbcbr1g 5204 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ ⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌)) | |
22 | csbvarg 4430 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑈 → ⦋𝑍 / 𝑤⦌𝑤 = 𝑍) | |
23 | 22 | breq1d 5157 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → (⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
24 | 21, 23 | bitrd 279 | . . . . 5 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
25 | 20, 24 | syl 17 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
26 | 17, 25 | imbi12d 345 | . . 3 ⊢ (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
27 | 10, 26 | mpbidi 240 | . 2 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
28 | 1, 8, 27 | mp2b 10 | 1 ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 [wsbc 3776 ⦋csb 3892 class class class wbr 5147 ‘cfv 6540 t+ctcl 14928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-frege1 42474 ax-frege2 42475 ax-frege8 42493 ax-frege52a 42541 ax-frege52c 42572 ax-frege58b 42585 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-seq 13963 df-trcl 14930 df-relexp 14963 df-he 42457 |
This theorem is referenced by: frege102 42649 |
Copyright terms: Public domain | W3C validator |