Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege92 | Structured version Visualization version GIF version |
Description: Inference from frege91 41562. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege92 | ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege91.x | . 2 ⊢ 𝑋 ∈ 𝑈 | |
2 | vex 3436 | . . . . 5 ⊢ 𝑤 ∈ V | |
3 | frege91.y | . . . . 5 ⊢ 𝑌 ∈ 𝑉 | |
4 | frege91.r | . . . . 5 ⊢ 𝑅 ∈ 𝑊 | |
5 | 2, 3, 4 | frege91 41562 | . . . 4 ⊢ (𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) |
6 | 5 | sbcth 3731 | . . 3 ⊢ (𝑋 ∈ 𝑈 → [𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) |
7 | frege53c 41522 | . . 3 ⊢ ([𝑋 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝑈 → (𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌))) |
9 | sbcim1 3772 | . . . 4 ⊢ ([𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)) | |
10 | 9 | imim2i 16 | . . 3 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))) |
11 | dfsbcq 3718 | . . . . 5 ⊢ (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ [𝑍 / 𝑤]𝑤𝑅𝑌)) | |
12 | sbcbr1g 5131 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ ⦋𝑋 / 𝑤⦌𝑤𝑅𝑌)) | |
13 | csbvarg 4365 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑈 → ⦋𝑋 / 𝑤⦌𝑤 = 𝑋) | |
14 | 13 | breq1d 5084 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑈 → (⦋𝑋 / 𝑤⦌𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
15 | 12, 14 | bitrd 278 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
16 | 1, 15 | ax-mp 5 | . . . . 5 ⊢ ([𝑋 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌) |
17 | 11, 16 | bitr3di 286 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌 ↔ 𝑋𝑅𝑌)) |
18 | eqcom 2745 | . . . . . . 7 ⊢ (𝑋 = 𝑍 ↔ 𝑍 = 𝑋) | |
19 | 18 | biimpi 215 | . . . . . 6 ⊢ (𝑋 = 𝑍 → 𝑍 = 𝑋) |
20 | 19, 1 | eqeltrdi 2847 | . . . . 5 ⊢ (𝑋 = 𝑍 → 𝑍 ∈ 𝑈) |
21 | sbcbr1g 5131 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ ⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌)) | |
22 | csbvarg 4365 | . . . . . . 7 ⊢ (𝑍 ∈ 𝑈 → ⦋𝑍 / 𝑤⦌𝑤 = 𝑍) | |
23 | 22 | breq1d 5084 | . . . . . 6 ⊢ (𝑍 ∈ 𝑈 → (⦋𝑍 / 𝑤⦌𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
24 | 21, 23 | bitrd 278 | . . . . 5 ⊢ (𝑍 ∈ 𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
25 | 20, 24 | syl 17 | . . . 4 ⊢ (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌 ↔ 𝑍(t+‘𝑅)𝑌)) |
26 | 17, 25 | imbi12d 345 | . . 3 ⊢ (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌 → [𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
27 | 10, 26 | mpbidi 240 | . 2 ⊢ ((𝑋 = 𝑍 → [𝑍 / 𝑤](𝑤𝑅𝑌 → 𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌))) |
28 | 1, 8, 27 | mp2b 10 | 1 ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 ⦋csb 3832 class class class wbr 5074 ‘cfv 6433 t+ctcl 14696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-frege1 41398 ax-frege2 41399 ax-frege8 41417 ax-frege52a 41465 ax-frege52c 41496 ax-frege58b 41509 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-trcl 14698 df-relexp 14731 df-he 41381 |
This theorem is referenced by: frege102 41573 |
Copyright terms: Public domain | W3C validator |