Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege92 Structured version   Visualization version   GIF version

Theorem frege92 43917
Description: Inference from frege91 43916. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege92 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))

Proof of Theorem frege92
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 frege91.x . 2 𝑋𝑈
2 vex 3492 . . . . 5 𝑤 ∈ V
3 frege91.y . . . . 5 𝑌𝑉
4 frege91.r . . . . 5 𝑅𝑊
52, 3, 4frege91 43916 . . . 4 (𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)
65sbcth 3819 . . 3 (𝑋𝑈[𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌))
7 frege53c 43876 . . 3 ([𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
86, 7syl 17 . 2 (𝑋𝑈 → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
9 sbcim1 3861 . . . 4 ([𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))
109imim2i 16 . . 3 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)))
11 dfsbcq 3806 . . . . 5 (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤𝑅𝑌))
12 sbcbr1g 5223 . . . . . . 7 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋 / 𝑤𝑤𝑅𝑌))
13 csbvarg 4457 . . . . . . . 8 (𝑋𝑈𝑋 / 𝑤𝑤 = 𝑋)
1413breq1d 5176 . . . . . . 7 (𝑋𝑈 → (𝑋 / 𝑤𝑤𝑅𝑌𝑋𝑅𝑌))
1512, 14bitrd 279 . . . . . 6 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
161, 15ax-mp 5 . . . . 5 ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌)
1711, 16bitr3di 286 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
18 eqcom 2747 . . . . . . 7 (𝑋 = 𝑍𝑍 = 𝑋)
1918biimpi 216 . . . . . 6 (𝑋 = 𝑍𝑍 = 𝑋)
2019, 1eqeltrdi 2852 . . . . 5 (𝑋 = 𝑍𝑍𝑈)
21 sbcbr1g 5223 . . . . . 6 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍 / 𝑤𝑤(t+‘𝑅)𝑌))
22 csbvarg 4457 . . . . . . 7 (𝑍𝑈𝑍 / 𝑤𝑤 = 𝑍)
2322breq1d 5176 . . . . . 6 (𝑍𝑈 → (𝑍 / 𝑤𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2421, 23bitrd 279 . . . . 5 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2520, 24syl 17 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2617, 25imbi12d 344 . . 3 (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
2710, 26mpbidi 241 . 2 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
281, 8, 27mp2b 10 1 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  [wsbc 3804  csb 3921   class class class wbr 5166  cfv 6573  t+ctcl 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-frege1 43752  ax-frege2 43753  ax-frege8 43771  ax-frege52a 43819  ax-frege52c 43850  ax-frege58b 43863
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-trcl 15036  df-relexp 15069  df-he 43735
This theorem is referenced by:  frege102  43927
  Copyright terms: Public domain W3C validator