Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege92 Structured version   Visualization version   GIF version

Theorem frege92 43945
Description: Inference from frege91 43944. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege92 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))

Proof of Theorem frege92
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 frege91.x . 2 𝑋𝑈
2 vex 3482 . . . . 5 𝑤 ∈ V
3 frege91.y . . . . 5 𝑌𝑉
4 frege91.r . . . . 5 𝑅𝑊
52, 3, 4frege91 43944 . . . 4 (𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)
65sbcth 3806 . . 3 (𝑋𝑈[𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌))
7 frege53c 43904 . . 3 ([𝑋 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
86, 7syl 17 . 2 (𝑋𝑈 → (𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)))
9 sbcim1 3848 . . . 4 ([𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌) → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌))
109imim2i 16 . . 3 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌)))
11 dfsbcq 3793 . . . . 5 (𝑋 = 𝑍 → ([𝑋 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤𝑅𝑌))
12 sbcbr1g 5205 . . . . . . 7 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋 / 𝑤𝑤𝑅𝑌))
13 csbvarg 4440 . . . . . . . 8 (𝑋𝑈𝑋 / 𝑤𝑤 = 𝑋)
1413breq1d 5158 . . . . . . 7 (𝑋𝑈 → (𝑋 / 𝑤𝑤𝑅𝑌𝑋𝑅𝑌))
1512, 14bitrd 279 . . . . . 6 (𝑋𝑈 → ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
161, 15ax-mp 5 . . . . 5 ([𝑋 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌)
1711, 16bitr3di 286 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤𝑅𝑌𝑋𝑅𝑌))
18 eqcom 2742 . . . . . . 7 (𝑋 = 𝑍𝑍 = 𝑋)
1918biimpi 216 . . . . . 6 (𝑋 = 𝑍𝑍 = 𝑋)
2019, 1eqeltrdi 2847 . . . . 5 (𝑋 = 𝑍𝑍𝑈)
21 sbcbr1g 5205 . . . . . 6 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍 / 𝑤𝑤(t+‘𝑅)𝑌))
22 csbvarg 4440 . . . . . . 7 (𝑍𝑈𝑍 / 𝑤𝑤 = 𝑍)
2322breq1d 5158 . . . . . 6 (𝑍𝑈 → (𝑍 / 𝑤𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2421, 23bitrd 279 . . . . 5 (𝑍𝑈 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2520, 24syl 17 . . . 4 (𝑋 = 𝑍 → ([𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌𝑍(t+‘𝑅)𝑌))
2617, 25imbi12d 344 . . 3 (𝑋 = 𝑍 → (([𝑍 / 𝑤]𝑤𝑅𝑌[𝑍 / 𝑤]𝑤(t+‘𝑅)𝑌) ↔ (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
2710, 26mpbidi 241 . 2 ((𝑋 = 𝑍[𝑍 / 𝑤](𝑤𝑅𝑌𝑤(t+‘𝑅)𝑌)) → (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌)))
281, 8, 27mp2b 10 1 (𝑋 = 𝑍 → (𝑋𝑅𝑌𝑍(t+‘𝑅)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  Vcvv 3478  [wsbc 3791  csb 3908   class class class wbr 5148  cfv 6563  t+ctcl 15021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-frege1 43780  ax-frege2 43781  ax-frege8 43799  ax-frege52a 43847  ax-frege52c 43878  ax-frege58b 43891
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-trcl 15023  df-relexp 15056  df-he 43763
This theorem is referenced by:  frege102  43955
  Copyright terms: Public domain W3C validator