Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem2b | Structured version Visualization version GIF version |
Description: Lemma for frege55b 41367. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege55lem2b | ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege54cor1b 41364 | . 2 ⊢ [𝑥 / 𝑧]𝑧 = 𝑥 | |
2 | frege53b 41360 | . 2 ⊢ ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-12 2177 ax-13 2373 ax-ext 2710 ax-frege8 41279 ax-frege52c 41358 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-sbc 3713 |
This theorem is referenced by: frege55b 41367 |
Copyright terms: Public domain | W3C validator |