Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege55lem2b Structured version   Visualization version   GIF version

Theorem frege55lem2b 42637
Description: Lemma for frege55b 42638. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege55lem2b (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)

Proof of Theorem frege55lem2b
StepHypRef Expression
1 frege54cor1b 42635 . 2 [𝑥 / 𝑧]𝑧 = 𝑥
2 frege53b 42631 . 2 ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥))
31, 2ax-mp 5 1 (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-13 2371  ax-ext 2703  ax-frege8 42550  ax-frege52c 42629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-sbc 3778
This theorem is referenced by:  frege55b  42638
  Copyright terms: Public domain W3C validator