| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem2b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege55b 44000. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege55lem2b | ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege54cor1b 43997 | . 2 ⊢ [𝑥 / 𝑧]𝑧 = 𝑥 | |
| 2 | frege53b 43993 | . 2 ⊢ ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-13 2372 ax-ext 2703 ax-frege8 43912 ax-frege52c 43991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: frege55b 44000 |
| Copyright terms: Public domain | W3C validator |