![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem2b | Structured version Visualization version GIF version |
Description: Lemma for frege55b 43391. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege55lem2b | ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege54cor1b 43388 | . 2 ⊢ [𝑥 / 𝑧]𝑧 = 𝑥 | |
2 | frege53b 43384 | . 2 ⊢ ([𝑥 / 𝑧]𝑧 = 𝑥 → (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-13 2365 ax-ext 2696 ax-frege8 43303 ax-frege52c 43382 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-sbc 3770 |
This theorem is referenced by: frege55b 43391 |
Copyright terms: Public domain | W3C validator |