Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege58bcor | Structured version Visualization version GIF version |
Description: Lemma for frege59b 41189. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege58bcor | ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58b 41186 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
2 | sbim 2304 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-12 2175 ax-frege58b 41186 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-nf 1792 df-sb 2071 |
This theorem is referenced by: frege59b 41189 frege62b 41192 |
Copyright terms: Public domain | W3C validator |