![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbim | Structured version Visualization version GIF version |
Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbi1 2071 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbi2 2306 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: sbrimOLD 2309 sblim 2310 sbor 2311 sbbi 2312 sbnf 2316 sbnfOLD 2317 sbequ8 2509 sbcimg 3856 mo5f 32517 iuninc 32583 suppss2f 32657 esumpfinvalf 34040 wl-sbrimt 37501 wl-sblimt 37502 frege58bcor 43865 frege60b 43867 frege65b 43872 ellimcabssub0 45538 |
Copyright terms: Public domain | W3C validator |