| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbim | Structured version Visualization version GIF version | ||
| Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbi1 2072 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sbi2 2302 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: sblim 2305 sbor 2306 sbbi 2307 sbnf 2311 sbnfOLD 2312 sbequ8 2500 sbcimg 3805 mo5f 32425 iuninc 32496 suppss2f 32569 esumpfinvalf 34073 wl-sbrimt 37542 wl-sblimt 37543 frege58bcor 43899 frege60b 43901 frege65b 43906 ellimcabssub0 45622 |
| Copyright terms: Public domain | W3C validator |