| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbim | Structured version Visualization version GIF version | ||
| Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbi1 2074 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sbi2 2304 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: sblim 2307 sbor 2308 sbbi 2309 sbnf 2313 sbnfOLD 2314 sbequ8 2501 sbcimg 3790 mo5f 32466 iuninc 32538 suppss2f 32618 esumpfinvalf 34087 wl-sbrimt 37587 wl-sblimt 37588 frege58bcor 43942 frege60b 43944 frege65b 43949 ellimcabssub0 45663 |
| Copyright terms: Public domain | W3C validator |