![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbim | Structured version Visualization version GIF version |
Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbi1 2073 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbi2 2297 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-nf 1785 df-sb 2067 |
This theorem is referenced by: sbrimOLD 2300 sblim 2301 sbor 2302 sbbi 2303 sbequ8 2499 sbralie 3353 sbcimg 3828 mo5f 32011 iuninc 32074 suppss2f 32145 esumpfinvalf 33387 bj-sbnf 36035 wl-sbrimt 36731 wl-sblimt 36732 frege58bcor 42969 frege60b 42971 frege65b 42976 ellimcabssub0 44644 |
Copyright terms: Public domain | W3C validator |