| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbim | Structured version Visualization version GIF version | ||
| Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbi1 2070 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sbi2 2301 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: sbrimOLD 2304 sblim 2305 sbor 2306 sbbi 2307 sbnf 2311 sbnfOLD 2312 sbequ8 2504 sbcimg 3819 mo5f 32437 iuninc 32509 suppss2f 32584 esumpfinvalf 34052 wl-sbrimt 37523 wl-sblimt 37524 frege58bcor 43893 frege60b 43895 frege65b 43900 ellimcabssub0 45604 |
| Copyright terms: Public domain | W3C validator |