Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbim Structured version   Visualization version   GIF version

Theorem sbim 2307
 Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbim ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbim
StepHypRef Expression
1 sbi1 2076 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sbi2 2306 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
31, 2impbii 212 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-12 2175 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  sbanOLD  2308  sbrim  2309  sblim  2311  sbor  2312  sbbi  2313  sbequ8  2520  sbcimg  3767  mo5f  30260  iuninc  30324  suppss2f  30398  esumpfinvalf  31445  bj-sbnf  34279  wl-sbrimt  34951  wl-sblimt  34952  wl-dfrmosb  35018  frege58bcor  40602  frege60b  40604  frege65b  40609  ellimcabssub0  42257
 Copyright terms: Public domain W3C validator