MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbim Structured version   Visualization version   GIF version

Theorem sbim 2302
Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbim ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbim
StepHypRef Expression
1 sbi1 2069 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sbi2 2301 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
31, 2impbii 209 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  [wsb 2062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-sb 2063
This theorem is referenced by:  sbrimOLD  2304  sblim  2305  sbor  2306  sbbi  2307  sbnf  2311  sbnfOLD  2312  sbequ8  2504  sbcimg  3843  mo5f  32517  iuninc  32581  suppss2f  32655  esumpfinvalf  34057  wl-sbrimt  37528  wl-sblimt  37529  frege58bcor  43893  frege60b  43895  frege65b  43900  ellimcabssub0  45573
  Copyright terms: Public domain W3C validator