MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbim Structured version   Visualization version   GIF version

Theorem sbim 2298
Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbim ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbim
StepHypRef Expression
1 sbi1 2073 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sbi2 2297 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑𝜓))
31, 2impbii 208 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1781  df-nf 1785  df-sb 2067
This theorem is referenced by:  sbrimOLD  2300  sblim  2301  sbor  2302  sbbi  2303  sbequ8  2499  sbralie  3353  sbcimg  3828  mo5f  32011  iuninc  32074  suppss2f  32145  esumpfinvalf  33387  bj-sbnf  36035  wl-sbrimt  36731  wl-sblimt  36732  frege58bcor  42969  frege60b  42971  frege65b  42976  ellimcabssub0  44644
  Copyright terms: Public domain W3C validator