Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbim | Structured version Visualization version GIF version |
Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbi1 2074 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbi2 2299 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: sbrimOLD 2302 sblim 2303 sbor 2304 sbbi 2305 sbequ8 2505 sbcimg 3767 mo5f 30837 iuninc 30900 suppss2f 30974 esumpfinvalf 32044 bj-sbnf 35024 wl-sbrimt 35705 wl-sblimt 35706 frege58bcor 41511 frege60b 41513 frege65b 41518 ellimcabssub0 43158 |
Copyright terms: Public domain | W3C validator |