Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem2VD Structured version   Visualization version   GIF version

Theorem onfrALTlem2VD 44860
Description: Virtual deduction proof of onfrALTlem2 44517. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 44517 is onfrALTlem2VD 44860 without virtual deductions and was automatically derived from onfrALTlem2VD 44860.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
4:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
5:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
7:4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
8:6,7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
11:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
12:11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
13:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
14:10,12,13: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
15:3,14: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
16:13,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
17:16: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
18:17: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
20:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
21:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
22:19,21: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) = ∅   )
23:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
24:23: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦𝑎   )
25:22,24: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
26:25: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
27:26: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
28:27: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
29:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
30:29: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅)   )
31:28,30: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
qed:31: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem2VD (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Distinct variable groups:   𝑦,𝑎   𝑥,𝑦

Proof of Theorem onfrALTlem2VD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idn3 44586 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2 simpr 484 . . . . . . . . . . . . . 14 (((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦)) → 𝑧 ∈ (𝑎𝑦))
31, 2e3 44708 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
4 inss2 4259 . . . . . . . . . . . . . 14 (𝑎𝑦) ⊆ 𝑦
54sseli 4004 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑎𝑦) → 𝑧𝑦)
63, 5e3 44708 . . . . . . . . . . . 12 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
7 inss1 4258 . . . . . . . . . . . . . . 15 (𝑎𝑦) ⊆ 𝑎
87sseli 4004 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑎𝑦) → 𝑧𝑎)
93, 8e3 44708 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
10 idn2 44584 . . . . . . . . . . . . . . . . . 18 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
11 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥𝑎)
1210, 11e2 44602 . . . . . . . . . . . . . . . . 17 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
13 idn1 44545 . . . . . . . . . . . . . . . . . 18 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
14 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On)
1513, 14e1a 44598 . . . . . . . . . . . . . . . . 17 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   )
16 ssel 4002 . . . . . . . . . . . . . . . . . 18 (𝑎 ⊆ On → (𝑥𝑎𝑥 ∈ On))
1716com12 32 . . . . . . . . . . . . . . . . 17 (𝑥𝑎 → (𝑎 ⊆ On → 𝑥 ∈ On))
1812, 15, 17e21 44701 . . . . . . . . . . . . . . . 16 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
19 eloni 6405 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → Ord 𝑥)
2018, 19e2 44602 . . . . . . . . . . . . . . 15 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
21 ordtr 6409 . . . . . . . . . . . . . . 15 (Ord 𝑥 → Tr 𝑥)
2220, 21e2 44602 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
23 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦)) → 𝑦 ∈ (𝑎𝑥))
241, 23e3 44708 . . . . . . . . . . . . . . 15 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
25 inss2 4259 . . . . . . . . . . . . . . . 16 (𝑎𝑥) ⊆ 𝑥
2625sseli 4004 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎𝑥) → 𝑦𝑥)
2724, 26e3 44708 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
28 trel 5292 . . . . . . . . . . . . . . 15 (Tr 𝑥 → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2928expcomd 416 . . . . . . . . . . . . . 14 (Tr 𝑥 → (𝑦𝑥 → (𝑧𝑦𝑧𝑥)))
3022, 27, 6, 29e233 44736 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
31 elin 3992 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑎𝑥) ↔ (𝑧𝑎𝑧𝑥))
3231simplbi2 500 . . . . . . . . . . . . 13 (𝑧𝑎 → (𝑧𝑥𝑧 ∈ (𝑎𝑥)))
339, 30, 32e33 44705 . . . . . . . . . . . 12 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
34 elin 3992 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝑎𝑥) ∩ 𝑦) ↔ (𝑧 ∈ (𝑎𝑥) ∧ 𝑧𝑦))
3534simplbi2com 502 . . . . . . . . . . . 12 (𝑧𝑦 → (𝑧 ∈ (𝑎𝑥) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)))
366, 33, 35e33 44705 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
3736in3an 44582 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
3837gen31 44592 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
39 df-ss 3993 . . . . . . . . . 10 ((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) ↔ ∀𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)))
4039biimpri 228 . . . . . . . . 9 (∀𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)) → (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦))
4138, 40e3 44708 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
42 idn3 44586 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
43 simpr 484 . . . . . . . . 9 ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ((𝑎𝑥) ∩ 𝑦) = ∅)
4442, 43e3 44708 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
45 sseq0 4426 . . . . . . . . 9 (((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑎𝑦) = ∅)
4645ex 412 . . . . . . . 8 ((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) → (((𝑎𝑥) ∩ 𝑦) = ∅ → (𝑎𝑦) = ∅))
4741, 44, 46e33 44705 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑎𝑦) = ∅   )
48 simpl 482 . . . . . . . . 9 ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → 𝑦 ∈ (𝑎𝑥))
4942, 48e3 44708 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
50 inss1 4258 . . . . . . . . 9 (𝑎𝑥) ⊆ 𝑎
5150sseli 4004 . . . . . . . 8 (𝑦 ∈ (𝑎𝑥) → 𝑦𝑎)
5249, 51e3 44708 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑦𝑎   )
53 pm3.21 471 . . . . . . 7 ((𝑎𝑦) = ∅ → (𝑦𝑎 → (𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
5447, 52, 53e33 44705 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
5554in3 44580 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
5655gen21 44590 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
57 exim 1832 . . . 4 (∀𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
5856, 57e2 44602 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
59 onfrALTlem3VD 44858 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )
60 df-rex 3077 . . . . 5 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
6160biimpi 216 . . . 4 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ → ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
6259, 61e2 44602 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
63 id 22 . . 3 ((∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
6458, 62, 63e22 44642 . 2 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
65 df-rex 3077 . . 3 (∃𝑦𝑎 (𝑎𝑦) = ∅ ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
6665biimpri 228 . 2 (∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
6764, 66e2 44602 1 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  cin 3975  wss 3976  c0 4352  Tr wtr 5283  Ord word 6394  Oncon0 6395  (   wvd2 44548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-vd1 44541  df-vd2 44549  df-vd3 44561
This theorem is referenced by:  onfrALTVD  44862
  Copyright terms: Public domain W3C validator