Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem2VD Structured version   Visualization version   GIF version

Theorem onfrALTlem2VD 44921
Description: Virtual deduction proof of onfrALTlem2 44579. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 44579 is onfrALTlem2VD 44921 without virtual deductions and was automatically derived from onfrALTlem2VD 44921.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
4:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
5:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
7:4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
8:6,7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
11:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
12:11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
13:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
14:10,12,13: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
15:3,14: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
16:13,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
17:16: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
18:17: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
20:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
21:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
22:19,21: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) = ∅   )
23:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
24:23: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦𝑎   )
25:22,24: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
26:25: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
27:26: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
28:27: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
29:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
30:29: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅)   )
31:28,30: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
qed:31: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem2VD (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Distinct variable groups:   𝑦,𝑎   𝑥,𝑦

Proof of Theorem onfrALTlem2VD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idn3 44648 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2 simpr 484 . . . . . . . . . . . . . 14 (((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦)) → 𝑧 ∈ (𝑎𝑦))
31, 2e3 44769 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
4 inss2 4183 . . . . . . . . . . . . . 14 (𝑎𝑦) ⊆ 𝑦
54sseli 3925 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑎𝑦) → 𝑧𝑦)
63, 5e3 44769 . . . . . . . . . . . 12 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
7 inss1 4182 . . . . . . . . . . . . . . 15 (𝑎𝑦) ⊆ 𝑎
87sseli 3925 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑎𝑦) → 𝑧𝑎)
93, 8e3 44769 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
10 idn2 44646 . . . . . . . . . . . . . . . . . 18 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
11 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥𝑎)
1210, 11e2 44664 . . . . . . . . . . . . . . . . 17 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
13 idn1 44607 . . . . . . . . . . . . . . . . . 18 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
14 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On)
1513, 14e1a 44660 . . . . . . . . . . . . . . . . 17 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   )
16 ssel 3923 . . . . . . . . . . . . . . . . . 18 (𝑎 ⊆ On → (𝑥𝑎𝑥 ∈ On))
1716com12 32 . . . . . . . . . . . . . . . . 17 (𝑥𝑎 → (𝑎 ⊆ On → 𝑥 ∈ On))
1812, 15, 17e21 44762 . . . . . . . . . . . . . . . 16 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
19 eloni 6311 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → Ord 𝑥)
2018, 19e2 44664 . . . . . . . . . . . . . . 15 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
21 ordtr 6315 . . . . . . . . . . . . . . 15 (Ord 𝑥 → Tr 𝑥)
2220, 21e2 44664 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
23 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦)) → 𝑦 ∈ (𝑎𝑥))
241, 23e3 44769 . . . . . . . . . . . . . . 15 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
25 inss2 4183 . . . . . . . . . . . . . . . 16 (𝑎𝑥) ⊆ 𝑥
2625sseli 3925 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎𝑥) → 𝑦𝑥)
2724, 26e3 44769 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
28 trel 5201 . . . . . . . . . . . . . . 15 (Tr 𝑥 → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2928expcomd 416 . . . . . . . . . . . . . 14 (Tr 𝑥 → (𝑦𝑥 → (𝑧𝑦𝑧𝑥)))
3022, 27, 6, 29e233 44797 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
31 elin 3913 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑎𝑥) ↔ (𝑧𝑎𝑧𝑥))
3231simplbi2 500 . . . . . . . . . . . . 13 (𝑧𝑎 → (𝑧𝑥𝑧 ∈ (𝑎𝑥)))
339, 30, 32e33 44766 . . . . . . . . . . . 12 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
34 elin 3913 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝑎𝑥) ∩ 𝑦) ↔ (𝑧 ∈ (𝑎𝑥) ∧ 𝑧𝑦))
3534simplbi2com 502 . . . . . . . . . . . 12 (𝑧𝑦 → (𝑧 ∈ (𝑎𝑥) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)))
366, 33, 35e33 44766 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
3736in3an 44644 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
3837gen31 44654 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
39 df-ss 3914 . . . . . . . . . 10 ((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) ↔ ∀𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)))
4039biimpri 228 . . . . . . . . 9 (∀𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)) → (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦))
4138, 40e3 44769 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
42 idn3 44648 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
43 simpr 484 . . . . . . . . 9 ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ((𝑎𝑥) ∩ 𝑦) = ∅)
4442, 43e3 44769 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
45 sseq0 4348 . . . . . . . . 9 (((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑎𝑦) = ∅)
4645ex 412 . . . . . . . 8 ((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) → (((𝑎𝑥) ∩ 𝑦) = ∅ → (𝑎𝑦) = ∅))
4741, 44, 46e33 44766 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑎𝑦) = ∅   )
48 simpl 482 . . . . . . . . 9 ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → 𝑦 ∈ (𝑎𝑥))
4942, 48e3 44769 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
50 inss1 4182 . . . . . . . . 9 (𝑎𝑥) ⊆ 𝑎
5150sseli 3925 . . . . . . . 8 (𝑦 ∈ (𝑎𝑥) → 𝑦𝑎)
5249, 51e3 44769 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑦𝑎   )
53 pm3.21 471 . . . . . . 7 ((𝑎𝑦) = ∅ → (𝑦𝑎 → (𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
5447, 52, 53e33 44766 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
5554in3 44642 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
5655gen21 44652 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
57 exim 1835 . . . 4 (∀𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
5856, 57e2 44664 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
59 onfrALTlem3VD 44919 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )
60 df-rex 3057 . . . . 5 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
6160biimpi 216 . . . 4 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ → ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
6259, 61e2 44664 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
63 id 22 . . 3 ((∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
6458, 62, 63e22 44704 . 2 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
65 df-rex 3057 . . 3 (∃𝑦𝑎 (𝑎𝑦) = ∅ ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
6665biimpri 228 . 2 (∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
6764, 66e2 44664 1 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  cin 3896  wss 3897  c0 4278  Tr wtr 5193  Ord word 6300  Oncon0 6301  (   wvd2 44610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-vd1 44603  df-vd2 44611  df-vd3 44623
This theorem is referenced by:  onfrALTVD  44923
  Copyright terms: Public domain W3C validator