Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem2VD Structured version   Visualization version   GIF version

Theorem onfrALTlem2VD 44115
Description: Virtual deduction proof of onfrALTlem2 43772. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 43772 is onfrALTlem2VD 44115 without virtual deductions and was automatically derived from onfrALTlem2VD 44115.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
4:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
5:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
7:4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
8:6,7: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
9:8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
11:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
12:11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
13:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
14:10,12,13: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
15:3,14: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
16:13,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
17:16: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
18:17: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
20:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
21:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
22:19,21: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎𝑦) = ∅   )
23:20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
24:23: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦𝑎   )
25:22,24: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅), (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
26:25: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
27:26: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
28:27: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥 ) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
29:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
30:29: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) 𝑦) = ∅)   )
31:28,30: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
qed:31: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎(𝑎𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem2VD (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Distinct variable groups:   𝑦,𝑎   𝑥,𝑦

Proof of Theorem onfrALTlem2VD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idn3 43841 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   )
2 simpr 484 . . . . . . . . . . . . . 14 (((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦)) → 𝑧 ∈ (𝑎𝑦))
31, 2e3 43963 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑦)   )
4 inss2 4229 . . . . . . . . . . . . . 14 (𝑎𝑦) ⊆ 𝑦
54sseli 3978 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑎𝑦) → 𝑧𝑦)
63, 5e3 43963 . . . . . . . . . . . 12 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑦   )
7 inss1 4228 . . . . . . . . . . . . . . 15 (𝑎𝑦) ⊆ 𝑎
87sseli 3978 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑎𝑦) → 𝑧𝑎)
93, 8e3 43963 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑎   )
10 idn2 43839 . . . . . . . . . . . . . . . . . 18 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
11 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥𝑎)
1210, 11e2 43857 . . . . . . . . . . . . . . . . 17 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
13 idn1 43800 . . . . . . . . . . . . . . . . . 18 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
14 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On)
1513, 14e1a 43853 . . . . . . . . . . . . . . . . 17 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   )
16 ssel 3975 . . . . . . . . . . . . . . . . . 18 (𝑎 ⊆ On → (𝑥𝑎𝑥 ∈ On))
1716com12 32 . . . . . . . . . . . . . . . . 17 (𝑥𝑎 → (𝑎 ⊆ On → 𝑥 ∈ On))
1812, 15, 17e21 43956 . . . . . . . . . . . . . . . 16 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
19 eloni 6374 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → Ord 𝑥)
2018, 19e2 43857 . . . . . . . . . . . . . . 15 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
21 ordtr 6378 . . . . . . . . . . . . . . 15 (Ord 𝑥 → Tr 𝑥)
2220, 21e2 43857 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Tr 𝑥   )
23 simpll 764 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦)) → 𝑦 ∈ (𝑎𝑥))
241, 23e3 43963 . . . . . . . . . . . . . . 15 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦 ∈ (𝑎𝑥)   )
25 inss2 4229 . . . . . . . . . . . . . . . 16 (𝑎𝑥) ⊆ 𝑥
2625sseli 3978 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝑎𝑥) → 𝑦𝑥)
2724, 26e3 43963 . . . . . . . . . . . . . 14 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑦𝑥   )
28 trel 5274 . . . . . . . . . . . . . . 15 (Tr 𝑥 → ((𝑧𝑦𝑦𝑥) → 𝑧𝑥))
2928expcomd 416 . . . . . . . . . . . . . 14 (Tr 𝑥 → (𝑦𝑥 → (𝑧𝑦𝑧𝑥)))
3022, 27, 6, 29e233 43991 . . . . . . . . . . . . 13 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧𝑥   )
31 elin 3964 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑎𝑥) ↔ (𝑧𝑎𝑧𝑥))
3231simplbi2 500 . . . . . . . . . . . . 13 (𝑧𝑎 → (𝑧𝑥𝑧 ∈ (𝑎𝑥)))
339, 30, 32e33 43960 . . . . . . . . . . . 12 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ (𝑎𝑥)   )
34 elin 3964 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝑎𝑥) ∩ 𝑦) ↔ (𝑧 ∈ (𝑎𝑥) ∧ 𝑧𝑦))
3534simplbi2com 502 . . . . . . . . . . . 12 (𝑧𝑦 → (𝑧 ∈ (𝑎𝑥) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)))
366, 33, 35e33 43960 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎𝑦))   ▶   𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)   )
3736in3an 43837 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
3837gen31 43847 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦))   )
39 dfss2 3968 . . . . . . . . . 10 ((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) ↔ ∀𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)))
4039biimpri 227 . . . . . . . . 9 (∀𝑧(𝑧 ∈ (𝑎𝑦) → 𝑧 ∈ ((𝑎𝑥) ∩ 𝑦)) → (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦))
4138, 40e3 43963 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦)   )
42 idn3 43841 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
43 simpr 484 . . . . . . . . 9 ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ((𝑎𝑥) ∩ 𝑦) = ∅)
4442, 43e3 43963 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   ((𝑎𝑥) ∩ 𝑦) = ∅   )
45 sseq0 4399 . . . . . . . . 9 (((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑎𝑦) = ∅)
4645ex 412 . . . . . . . 8 ((𝑎𝑦) ⊆ ((𝑎𝑥) ∩ 𝑦) → (((𝑎𝑥) ∩ 𝑦) = ∅ → (𝑎𝑦) = ∅))
4741, 44, 46e33 43960 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑎𝑦) = ∅   )
48 simpl 482 . . . . . . . . 9 ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → 𝑦 ∈ (𝑎𝑥))
4942, 48e3 43963 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)   )
50 inss1 4228 . . . . . . . . 9 (𝑎𝑥) ⊆ 𝑎
5150sseli 3978 . . . . . . . 8 (𝑦 ∈ (𝑎𝑥) → 𝑦𝑎)
5249, 51e3 43963 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   𝑦𝑎   )
53 pm3.21 471 . . . . . . 7 ((𝑎𝑦) = ∅ → (𝑦𝑎 → (𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
5447, 52, 53e33 43960 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ,   (𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   ▶   (𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
5554in3 43835 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
5655gen21 43845 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
57 exim 1835 . . . 4 (∀𝑦((𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → (𝑦𝑎 ∧ (𝑎𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
5856, 57e2 43857 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))   )
59 onfrALTlem3VD 44113 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )
60 df-rex 3070 . . . . 5 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
6160biimpi 215 . . . 4 (∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅ → ∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅))
6259, 61e2 43857 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅)   )
63 id 22 . . 3 ((∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎𝑥) ∧ ((𝑎𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
6458, 62, 63e22 43897 . 2 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)   )
65 df-rex 3070 . . 3 (∃𝑦𝑎 (𝑎𝑦) = ∅ ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
6665biimpri 227 . 2 (∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅)
6764, 66e2 43857 1 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1780  wcel 2105  wne 2939  wrex 3069  cin 3947  wss 3948  c0 4322  Tr wtr 5265  Ord word 6363  Oncon0 6364  (   wvd2 43803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-vd1 43796  df-vd2 43804  df-vd3 43816
This theorem is referenced by:  onfrALTVD  44117
  Copyright terms: Public domain W3C validator