Step | Hyp | Ref
| Expression |
1 | | idn3 42273 |
. . . . . . . . . . . . . 14
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ) |
2 | | simpr 486 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) → 𝑧 ∈ (𝑎 ∩ 𝑦)) |
3 | 1, 2 | e3 42395 |
. . . . . . . . . . . . 13
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑦) ) |
4 | | inss2 4169 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∩ 𝑦) ⊆ 𝑦 |
5 | 4 | sseli 3922 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ 𝑦) |
6 | 3, 5 | e3 42395 |
. . . . . . . . . . . 12
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑦 ) |
7 | | inss1 4168 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∩ 𝑦) ⊆ 𝑎 |
8 | 7 | sseli 3922 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ 𝑎) |
9 | 3, 8 | e3 42395 |
. . . . . . . . . . . . 13
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑎 ) |
10 | | idn2 42271 |
. . . . . . . . . . . . . . . . . 18
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ) |
11 | | simpl 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) → 𝑥 ∈ 𝑎) |
12 | 10, 11 | e2 42289 |
. . . . . . . . . . . . . . . . 17
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ 𝑎 ) |
13 | | idn1 42232 |
. . . . . . . . . . . . . . . . . 18
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ) |
14 | | simpl 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On) |
15 | 13, 14 | e1a 42285 |
. . . . . . . . . . . . . . . . 17
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) ▶ 𝑎 ⊆ On ) |
16 | | ssel 3919 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ⊆ On → (𝑥 ∈ 𝑎 → 𝑥 ∈ On)) |
17 | 16 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑎 → (𝑎 ⊆ On → 𝑥 ∈ On)) |
18 | 12, 15, 17 | e21 42388 |
. . . . . . . . . . . . . . . 16
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ 𝑥 ∈ On ) |
19 | | eloni 6291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ On → Ord 𝑥) |
20 | 18, 19 | e2 42289 |
. . . . . . . . . . . . . . 15
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Ord 𝑥 ) |
21 | | ordtr 6295 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝑥 → Tr 𝑥) |
22 | 20, 21 | e2 42289 |
. . . . . . . . . . . . . 14
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ Tr 𝑥 ) |
23 | | simpll 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) → 𝑦 ∈ (𝑎 ∩ 𝑥)) |
24 | 1, 23 | e3 42395 |
. . . . . . . . . . . . . . 15
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) ) |
25 | | inss2 4169 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∩ 𝑥) ⊆ 𝑥 |
26 | 25 | sseli 3922 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝑎 ∩ 𝑥) → 𝑦 ∈ 𝑥) |
27 | 24, 26 | e3 42395 |
. . . . . . . . . . . . . 14
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑦 ∈ 𝑥 ) |
28 | | trel 5207 |
. . . . . . . . . . . . . . 15
⊢ (Tr 𝑥 → ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
29 | 28 | expcomd 418 |
. . . . . . . . . . . . . 14
⊢ (Tr 𝑥 → (𝑦 ∈ 𝑥 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥))) |
30 | 22, 27, 6, 29 | e233 42423 |
. . . . . . . . . . . . 13
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ 𝑥 ) |
31 | | elin 3908 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑎 ∩ 𝑥) ↔ (𝑧 ∈ 𝑎 ∧ 𝑧 ∈ 𝑥)) |
32 | 31 | simplbi2 502 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑎 → (𝑧 ∈ 𝑥 → 𝑧 ∈ (𝑎 ∩ 𝑥))) |
33 | 9, 30, 32 | e33 42392 |
. . . . . . . . . . . 12
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ (𝑎 ∩ 𝑥) ) |
34 | | elin 3908 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦) ↔ (𝑧 ∈ (𝑎 ∩ 𝑥) ∧ 𝑧 ∈ 𝑦)) |
35 | 34 | simplbi2com 504 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑦 → (𝑧 ∈ (𝑎 ∩ 𝑥) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦))) |
36 | 6, 33, 35 | e33 42392 |
. . . . . . . . . . 11
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦)) ▶ 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦) ) |
37 | 36 | in3an 42269 |
. . . . . . . . . 10
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) ) |
38 | 37 | gen31 42279 |
. . . . . . . . 9
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ ∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) ) |
39 | | dfss2 3912 |
. . . . . . . . . 10
⊢ ((𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦) ↔ ∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦))) |
40 | 39 | biimpri 227 |
. . . . . . . . 9
⊢
(∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)) → (𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦)) |
41 | 38, 40 | e3 42395 |
. . . . . . . 8
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ (𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦) ) |
42 | | idn3 42273 |
. . . . . . . . 9
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ) |
43 | | simpr 486 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) |
44 | 42, 43 | e3 42395 |
. . . . . . . 8
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ) |
45 | | sseq0 4339 |
. . . . . . . . 9
⊢ (((𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → (𝑎 ∩ 𝑦) = ∅) |
46 | 45 | ex 414 |
. . . . . . . 8
⊢ ((𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦) → (((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ → (𝑎 ∩ 𝑦) = ∅)) |
47 | 41, 44, 46 | e33 42392 |
. . . . . . 7
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ (𝑎 ∩ 𝑦) = ∅ ) |
48 | | simpl 484 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → 𝑦 ∈ (𝑎 ∩ 𝑥)) |
49 | 42, 48 | e3 42395 |
. . . . . . . 8
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ 𝑦 ∈ (𝑎 ∩ 𝑥) ) |
50 | | inss1 4168 |
. . . . . . . . 9
⊢ (𝑎 ∩ 𝑥) ⊆ 𝑎 |
51 | 50 | sseli 3922 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑎 ∩ 𝑥) → 𝑦 ∈ 𝑎) |
52 | 49, 51 | e3 42395 |
. . . . . . 7
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ 𝑦 ∈ 𝑎 ) |
53 | | pm3.21 473 |
. . . . . . 7
⊢ ((𝑎 ∩ 𝑦) = ∅ → (𝑦 ∈ 𝑎 → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))) |
54 | 47, 52, 53 | e33 42392 |
. . . . . 6
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) , (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ▶ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) ) |
55 | 54 | in3 42267 |
. . . . 5
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) ) |
56 | 55 | gen21 42277 |
. . . 4
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∀𝑦((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) ) |
57 | | exim 1834 |
. . . 4
⊢
(∀𝑦((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))) |
58 | 56, 57 | e2 42289 |
. . 3
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) ) |
59 | | onfrALTlem3VD 42545 |
. . . 4
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ) |
60 | | df-rex 3072 |
. . . . 5
⊢
(∃𝑦 ∈
(𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) |
61 | 60 | biimpi 215 |
. . . 4
⊢
(∃𝑦 ∈
(𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ → ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) |
62 | 59, 61 | e2 42289 |
. . 3
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ) |
63 | | id 22 |
. . 3
⊢
((∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) → (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))) |
64 | 58, 62, 63 | e22 42329 |
. 2
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) ) |
65 | | df-rex 3072 |
. . 3
⊢
(∃𝑦 ∈
𝑎 (𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
66 | 65 | biimpri 227 |
. 2
⊢
(∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) |
67 | 64, 66 | e2 42289 |
1
⊢ ( (𝑎 ⊆ On ∧ 𝑎 ≠ ∅) , (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅) ▶ ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ) |