MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gencbvex2 Structured version   Visualization version   GIF version

Theorem gencbvex2 3489
Description: Restatement of gencbvex 3488 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.)
Hypotheses
Ref Expression
gencbvex2.1 𝐴 ∈ V
gencbvex2.2 (𝐴 = 𝑦 → (𝜑𝜓))
gencbvex2.3 (𝐴 = 𝑦 → (𝜒𝜃))
gencbvex2.4 (𝜃 → ∃𝑥(𝜒𝐴 = 𝑦))
Assertion
Ref Expression
gencbvex2 (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝜃,𝑥   𝜒,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥)   𝜃(𝑦)   𝐴(𝑥)

Proof of Theorem gencbvex2
StepHypRef Expression
1 gencbvex2.1 . 2 𝐴 ∈ V
2 gencbvex2.2 . 2 (𝐴 = 𝑦 → (𝜑𝜓))
3 gencbvex2.3 . 2 (𝐴 = 𝑦 → (𝜒𝜃))
4 gencbvex2.4 . . 3 (𝜃 → ∃𝑥(𝜒𝐴 = 𝑦))
53biimpac 479 . . . 4 ((𝜒𝐴 = 𝑦) → 𝜃)
65exlimiv 1933 . . 3 (∃𝑥(𝜒𝐴 = 𝑦) → 𝜃)
74, 6impbii 208 . 2 (𝜃 ↔ ∃𝑥(𝜒𝐴 = 𝑦))
81, 2, 3, 7gencbvex 3488 1 (∃𝑥(𝜒𝜑) ↔ ∃𝑦(𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator