|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gencbvex2 | Structured version Visualization version GIF version | ||
| Description: Restatement of gencbvex 3540 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) | 
| Ref | Expression | 
|---|---|
| gencbvex2.1 | ⊢ 𝐴 ∈ V | 
| gencbvex2.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| gencbvex2.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | 
| gencbvex2.4 | ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | 
| Ref | Expression | 
|---|---|
| gencbvex2 | ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gencbvex2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | gencbvex2.2 | . 2 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | gencbvex2.3 | . 2 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
| 4 | gencbvex2.4 | . . 3 ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
| 5 | 3 | biimpac 478 | . . . 4 ⊢ ((𝜒 ∧ 𝐴 = 𝑦) → 𝜃) | 
| 6 | 5 | exlimiv 1929 | . . 3 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝑦) → 𝜃) | 
| 7 | 4, 6 | impbii 209 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | 
| 8 | 1, 2, 3, 7 | gencbvex 3540 | 1 ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |