Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gencbvex2 | Structured version Visualization version GIF version |
Description: Restatement of gencbvex 3478 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
Ref | Expression |
---|---|
gencbvex2.1 | ⊢ 𝐴 ∈ V |
gencbvex2.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) |
gencbvex2.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) |
gencbvex2.4 | ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
Ref | Expression |
---|---|
gencbvex2 | ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbvex2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | gencbvex2.2 | . 2 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | gencbvex2.3 | . 2 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
4 | gencbvex2.4 | . . 3 ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
5 | 3 | biimpac 478 | . . . 4 ⊢ ((𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
6 | 5 | exlimiv 1934 | . . 3 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
7 | 4, 6 | impbii 208 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
8 | 1, 2, 3, 7 | gencbvex 3478 | 1 ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |