Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gencbval | Structured version Visualization version GIF version |
Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) |
Ref | Expression |
---|---|
gencbval.1 | ⊢ 𝐴 ∈ V |
gencbval.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) |
gencbval.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) |
gencbval.4 | ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
Ref | Expression |
---|---|
gencbval | ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbval.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | gencbval.2 | . . . . 5 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 317 | . . . 4 ⊢ (𝐴 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | gencbval.3 | . . . 4 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
5 | gencbval.4 | . . . 4 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
6 | 1, 3, 4, 5 | gencbvex 3478 | . . 3 ⊢ (∃𝑥(𝜒 ∧ ¬ 𝜑) ↔ ∃𝑦(𝜃 ∧ ¬ 𝜓)) |
7 | exanali 1863 | . . 3 ⊢ (∃𝑥(𝜒 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜒 → 𝜑)) | |
8 | exanali 1863 | . . 3 ⊢ (∃𝑦(𝜃 ∧ ¬ 𝜓) ↔ ¬ ∀𝑦(𝜃 → 𝜓)) | |
9 | 6, 7, 8 | 3bitr3i 300 | . 2 ⊢ (¬ ∀𝑥(𝜒 → 𝜑) ↔ ¬ ∀𝑦(𝜃 → 𝜓)) |
10 | 9 | con4bii 320 | 1 ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |