|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gencbval | Structured version Visualization version GIF version | ||
| Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) | 
| Ref | Expression | 
|---|---|
| gencbval.1 | ⊢ 𝐴 ∈ V | 
| gencbval.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| gencbval.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | 
| gencbval.4 | ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | 
| Ref | Expression | 
|---|---|
| gencbval | ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gencbval.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | gencbval.2 | . . . . 5 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝐴 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) | 
| 4 | gencbval.3 | . . . 4 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
| 5 | gencbval.4 | . . . 4 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
| 6 | 1, 3, 4, 5 | gencbvex 3540 | . . 3 ⊢ (∃𝑥(𝜒 ∧ ¬ 𝜑) ↔ ∃𝑦(𝜃 ∧ ¬ 𝜓)) | 
| 7 | exanali 1858 | . . 3 ⊢ (∃𝑥(𝜒 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜒 → 𝜑)) | |
| 8 | exanali 1858 | . . 3 ⊢ (∃𝑦(𝜃 ∧ ¬ 𝜓) ↔ ¬ ∀𝑦(𝜃 → 𝜓)) | |
| 9 | 6, 7, 8 | 3bitr3i 301 | . 2 ⊢ (¬ ∀𝑥(𝜒 → 𝜑) ↔ ¬ ∀𝑦(𝜃 → 𝜓)) | 
| 10 | 9 | con4bii 321 | 1 ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |