Proof of Theorem gencbvex
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | excom 2161 | . 2
⊢
(∃𝑥∃𝑦(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ ∃𝑦∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓))) | 
| 2 |  | gencbvex.1 | . . . 4
⊢ 𝐴 ∈ V | 
| 3 |  | gencbvex.3 | . . . . . . 7
⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | 
| 4 |  | gencbvex.2 | . . . . . . 7
⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 5 | 3, 4 | anbi12d 632 | . . . . . 6
⊢ (𝐴 = 𝑦 → ((𝜒 ∧ 𝜑) ↔ (𝜃 ∧ 𝜓))) | 
| 6 | 5 | bicomd 223 | . . . . 5
⊢ (𝐴 = 𝑦 → ((𝜃 ∧ 𝜓) ↔ (𝜒 ∧ 𝜑))) | 
| 7 | 6 | eqcoms 2744 | . . . 4
⊢ (𝑦 = 𝐴 → ((𝜃 ∧ 𝜓) ↔ (𝜒 ∧ 𝜑))) | 
| 8 | 2, 7 | ceqsexv 3531 | . . 3
⊢
(∃𝑦(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (𝜒 ∧ 𝜑)) | 
| 9 | 8 | exbii 1847 | . 2
⊢
(∃𝑥∃𝑦(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ ∃𝑥(𝜒 ∧ 𝜑)) | 
| 10 |  | 19.41v 1948 | . . . 4
⊢
(∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓))) | 
| 11 |  | simpr 484 | . . . . 5
⊢
((∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) → (𝜃 ∧ 𝜓)) | 
| 12 |  | gencbvex.4 | . . . . . . . 8
⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | 
| 13 |  | eqcom 2743 | . . . . . . . . . . 11
⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) | 
| 14 | 13 | biimpi 216 | . . . . . . . . . 10
⊢ (𝐴 = 𝑦 → 𝑦 = 𝐴) | 
| 15 | 14 | adantl 481 | . . . . . . . . 9
⊢ ((𝜒 ∧ 𝐴 = 𝑦) → 𝑦 = 𝐴) | 
| 16 | 15 | eximi 1834 | . . . . . . . 8
⊢
(∃𝑥(𝜒 ∧ 𝐴 = 𝑦) → ∃𝑥 𝑦 = 𝐴) | 
| 17 | 12, 16 | sylbi 217 | . . . . . . 7
⊢ (𝜃 → ∃𝑥 𝑦 = 𝐴) | 
| 18 | 17 | adantr 480 | . . . . . 6
⊢ ((𝜃 ∧ 𝜓) → ∃𝑥 𝑦 = 𝐴) | 
| 19 | 18 | ancri 549 | . . . . 5
⊢ ((𝜃 ∧ 𝜓) → (∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓))) | 
| 20 | 11, 19 | impbii 209 | . . . 4
⊢
((∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (𝜃 ∧ 𝜓)) | 
| 21 | 10, 20 | bitri 275 | . . 3
⊢
(∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (𝜃 ∧ 𝜓)) | 
| 22 | 21 | exbii 1847 | . 2
⊢
(∃𝑦∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ ∃𝑦(𝜃 ∧ 𝜓)) | 
| 23 | 1, 9, 22 | 3bitr3i 301 | 1
⊢
(∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |