Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exrot4 | Structured version Visualization version GIF version |
Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
Ref | Expression |
---|---|
exrot4 | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom13 2164 | . . 3 ⊢ (∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑤∃𝑧∃𝑦𝜑) | |
2 | 1 | exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑥∃𝑤∃𝑧∃𝑦𝜑) |
3 | excom13 2164 | . 2 ⊢ (∃𝑥∃𝑤∃𝑧∃𝑦𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: elvvv 5662 dfoprab2 7333 xpassen 8853 5oalem7 30022 elfuns 34217 fundcmpsurbijinj 44862 |
Copyright terms: Public domain | W3C validator |