MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exrot4 Structured version   Visualization version   GIF version

Theorem exrot4 2168
Description: Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
exrot4 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)

Proof of Theorem exrot4
StepHypRef Expression
1 excom13 2166 . . 3 (∃𝑦𝑧𝑤𝜑 ↔ ∃𝑤𝑧𝑦𝜑)
21exbii 1851 . 2 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑥𝑤𝑧𝑦𝜑)
3 excom13 2166 . 2 (∃𝑥𝑤𝑧𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)
42, 3bitri 274 1 (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-11 2156
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  elvvv  5653  dfoprab2  7311  xpassen  8806  5oalem7  29923  elfuns  34144  fundcmpsurbijinj  44750
  Copyright terms: Public domain W3C validator