Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbv3v | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbv3 2397 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbv3v.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbv3v.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbv3v.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
cbv3v | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv3v.nf1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nf5ri 2191 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | hbal 2169 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
4 | cbv3v.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | cbv3v.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
6 | 4, 5 | spimfv 2235 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
7 | 3, 6 | alrimih 1827 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbv1v 2335 cbv3hv 2339 cbvalv1 2340 |
Copyright terms: Public domain | W3C validator |