|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbv3v | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbv3 2402 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) | 
| Ref | Expression | 
|---|---|
| cbv3v.nf1 | ⊢ Ⅎ𝑦𝜑 | 
| cbv3v.nf2 | ⊢ Ⅎ𝑥𝜓 | 
| cbv3v.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbv3v | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbv3v.nf1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nf5ri 2195 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | 
| 3 | 2 | hbal 2167 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | 
| 4 | cbv3v.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 5 | cbv3v.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 6 | 4, 5 | spimfv 2239 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | 
| 7 | 3, 6 | alrimih 1824 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: cbv1v 2338 cbv3hv 2342 cbvalv1 2343 | 
| Copyright terms: Public domain | W3C validator |