| Step | Hyp | Ref
| Expression |
| 1 | | df-sb 2065 |
. 2
⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑤(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) |
| 2 | | hbsbw.1 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧𝜑) |
| 3 | 2 | imim2i 16 |
. . . . . . 7
⊢ ((𝑥 = 𝑤 → 𝜑) → (𝑥 = 𝑤 → ∀𝑧𝜑)) |
| 4 | 3 | alimi 1811 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑤 → 𝜑) → ∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑)) |
| 5 | | 19.21v 1939 |
. . . . . . . 8
⊢
(∀𝑧(𝑥 = 𝑤 → 𝜑) ↔ (𝑥 = 𝑤 → ∀𝑧𝜑)) |
| 6 | 5 | biimpri 228 |
. . . . . . 7
⊢ ((𝑥 = 𝑤 → ∀𝑧𝜑) → ∀𝑧(𝑥 = 𝑤 → 𝜑)) |
| 7 | 6 | alimi 1811 |
. . . . . 6
⊢
(∀𝑥(𝑥 = 𝑤 → ∀𝑧𝜑) → ∀𝑥∀𝑧(𝑥 = 𝑤 → 𝜑)) |
| 8 | | ax-11 2157 |
. . . . . 6
⊢
(∀𝑥∀𝑧(𝑥 = 𝑤 → 𝜑) → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑)) |
| 9 | 4, 7, 8 | 3syl 18 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑤 → 𝜑) → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑)) |
| 10 | 9 | imim2i 16 |
. . . 4
⊢ ((𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) → (𝑤 = 𝑦 → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑))) |
| 11 | | 19.21v 1939 |
. . . 4
⊢
(∀𝑧(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) ↔ (𝑤 = 𝑦 → ∀𝑧∀𝑥(𝑥 = 𝑤 → 𝜑))) |
| 12 | 10, 11 | sylibr 234 |
. . 3
⊢ ((𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) → ∀𝑧(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) |
| 13 | 12 | hbal 2167 |
. 2
⊢
(∀𝑤(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) → ∀𝑧∀𝑤(𝑤 = 𝑦 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) |
| 14 | 1, 13 | hbxfrbi 1825 |
1
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑) |