MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsbwOLD Structured version   Visualization version   GIF version

Theorem hbsbwOLD 2326
Description: Obsolete version of hbsbw 2169 as of 23-May-2024. (Contributed by NM, 12-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
hbsbwOLD.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsbwOLD ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbsbwOLD
StepHypRef Expression
1 hbsbwOLD.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21nf5i 2142 . . 3 𝑧𝜑
32nfsbv 2324 . 2 𝑧[𝑦 / 𝑥]𝜑
43nf5ri 2188 1 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator