MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfal Structured version   Visualization version   GIF version

Theorem nfal 2317
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfal.1 𝑥𝜑
Assertion
Ref Expression
nfal 𝑥𝑦𝜑

Proof of Theorem nfal
StepHypRef Expression
1 nfal.1 . . . 4 𝑥𝜑
21nf5ri 2188 . . 3 (𝜑 → ∀𝑥𝜑)
32hbal 2167 . 2 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
43nf5i 2142 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfex  2318  nfnf  2320  nfsbvOLD  2325  aaanOLD  2329  cbval2v  2340  cbval2vOLD  2341  pm11.53  2344  19.12vv  2345  cbval2  2411  nfsb4t  2503  mof  2563  euf  2576  2eu3  2655  axextmo  2713  nfnfc1  2910  nfnfc  2919  nfabdwOLD  2931  sbcnestgfw  4352  sbcnestgf  4357  nfdisjw  5051  nfdisj  5052  nfdisj1  5053  axrep1  5210  axrep2  5212  axrep3  5213  axrep4  5214  nffr  5563  zfcndrep  10370  zfcndinf  10374  mreexexd  17357  mptelee  27263  mo5f  30837  iinabrex  30908  19.12b  33777  bj-cbv2v  34980  ax11-pm2  35019  wl-sb8t  35707  wl-mo2tf  35726  wl-eutf  35728  wl-mo2t  35730  wl-mo3t  35731  wl-sb8eut  35732  mpobi123f  36320  pm11.57  42007  pm11.59  42009  ichnfimlem  44915  ichnfim  44916  nfsetrecs  46392
  Copyright terms: Public domain W3C validator