![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2188 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbal 2167 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
4 | 3 | nf5i 2142 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1539 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 |
This theorem is referenced by: nfex 2317 nfnf 2319 nfsbvOLD 2324 aaanOLD 2328 cbval2v 2339 pm11.53 2342 19.12vv 2343 cbval2 2410 nfsb4t 2498 mof 2557 euf 2570 2eu3 2649 axextmo 2707 nfnfc1 2906 nfnfc 2915 nfabdwOLD 2927 sbcnestgfw 4418 sbcnestgf 4423 nfdisjw 5125 nfdisj 5126 nfdisj1 5127 axrep1 5286 axrep2 5288 axrep3 5289 axrep4 5290 nffr 5650 zfcndrep 10608 zfcndinf 10612 mreexexd 17591 mptelee 28150 mo5f 31724 iinabrex 31795 19.12b 34768 bj-cbv2v 35671 ax11-pm2 35709 wl-sb8t 36412 wl-mo2tf 36431 wl-eutf 36433 wl-mo2t 36435 wl-mo3t 36436 wl-sb8eut 36437 mpobi123f 37025 pm11.57 43138 pm11.59 43140 ichnfimlem 46121 ichnfim 46122 nfsetrecs 47721 pgind 47752 |
Copyright terms: Public domain | W3C validator |