| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2198 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbal 2170 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| 4 | 3 | nf5i 2149 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfex 2325 nfnf 2327 cbval2v 2343 pm11.53 2346 19.12vv 2347 cbval2 2411 nfsb4t 2499 mof 2558 euf 2571 2eu3 2649 axextmo 2707 nfnfc1 2897 nfnfc 2907 sbcnestgfw 4368 sbcnestgf 4373 nfdisjw 5068 nfdisj 5069 nfdisj1 5070 axrep1 5216 axrep2 5218 axrep3 5219 axrep4OLD 5222 nffr 5587 zfcndrep 10505 zfcndinf 10509 mreexexd 17554 mptelee 28873 mo5f 32468 iinabrex 32549 19.12b 35843 bj-cbv2v 36842 ax11-pm2 36880 wl-sb8t 37596 wl-mo2tf 37615 wl-eutf 37617 wl-mo2t 37619 wl-mo3t 37620 wl-sb8eut 37622 wl-sb8eutv 37623 mpobi123f 38212 pm11.57 44492 pm11.59 44494 permaxrep 45109 ichnfimlem 47573 ichnfim 47574 nfsetrecs 49797 pgind 49828 |
| Copyright terms: Public domain | W3C validator |