| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2195 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbal 2167 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| 4 | 3 | nf5i 2146 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfex 2324 nfnf 2326 aaanOLD 2333 cbval2v 2344 pm11.53 2347 19.12vv 2348 cbval2 2415 nfsb4t 2503 mof 2562 euf 2575 2eu3 2653 axextmo 2711 nfnfc1 2901 nfnfc 2911 sbcnestgfw 4396 sbcnestgf 4401 nfdisjw 5098 nfdisj 5099 nfdisj1 5100 axrep1 5250 axrep2 5252 axrep3 5253 axrep4OLD 5256 nffr 5627 zfcndrep 10628 zfcndinf 10632 mreexexd 17660 mptelee 28874 mo5f 32470 iinabrex 32550 19.12b 35819 bj-cbv2v 36816 ax11-pm2 36854 wl-sb8t 37570 wl-mo2tf 37589 wl-eutf 37591 wl-mo2t 37593 wl-mo3t 37594 wl-sb8eut 37596 wl-sb8eutv 37597 mpobi123f 38186 pm11.57 44413 pm11.59 44415 permaxrep 45031 ichnfimlem 47477 ichnfim 47478 nfsetrecs 49550 pgind 49581 |
| Copyright terms: Public domain | W3C validator |