MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfal Structured version   Visualization version   GIF version

Theorem nfal 2323
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfal.1 𝑥𝜑
Assertion
Ref Expression
nfal 𝑥𝑦𝜑

Proof of Theorem nfal
StepHypRef Expression
1 nfal.1 . . . 4 𝑥𝜑
21nf5ri 2195 . . 3 (𝜑 → ∀𝑥𝜑)
32hbal 2167 . 2 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
43nf5i 2146 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfex  2324  nfnf  2326  aaanOLD  2333  cbval2v  2344  pm11.53  2347  19.12vv  2348  cbval2  2415  nfsb4t  2503  mof  2562  euf  2575  2eu3  2653  axextmo  2711  nfnfc1  2901  nfnfc  2911  sbcnestgfw  4396  sbcnestgf  4401  nfdisjw  5098  nfdisj  5099  nfdisj1  5100  axrep1  5250  axrep2  5252  axrep3  5253  axrep4OLD  5256  nffr  5627  zfcndrep  10628  zfcndinf  10632  mreexexd  17660  mptelee  28874  mo5f  32470  iinabrex  32550  19.12b  35819  bj-cbv2v  36816  ax11-pm2  36854  wl-sb8t  37570  wl-mo2tf  37589  wl-eutf  37591  wl-mo2t  37593  wl-mo3t  37594  wl-sb8eut  37596  wl-sb8eutv  37597  mpobi123f  38186  pm11.57  44413  pm11.59  44415  permaxrep  45031  ichnfimlem  47477  ichnfim  47478  nfsetrecs  49550  pgind  49581
  Copyright terms: Public domain W3C validator