| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbal 2168 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| 4 | 3 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfex 2323 nfnf 2325 cbval2v 2341 pm11.53 2344 19.12vv 2345 cbval2 2409 nfsb4t 2497 mof 2556 euf 2569 2eu3 2647 axextmo 2705 nfnfc1 2894 nfnfc 2904 sbcnestgfw 4384 sbcnestgf 4389 nfdisjw 5086 nfdisj 5087 nfdisj1 5088 axrep1 5235 axrep2 5237 axrep3 5238 axrep4OLD 5241 nffr 5611 zfcndrep 10567 zfcndinf 10571 mreexexd 17609 mptelee 28822 mo5f 32418 iinabrex 32498 19.12b 35789 bj-cbv2v 36786 ax11-pm2 36824 wl-sb8t 37540 wl-mo2tf 37559 wl-eutf 37561 wl-mo2t 37563 wl-mo3t 37564 wl-sb8eut 37566 wl-sb8eutv 37567 mpobi123f 38156 pm11.57 44378 pm11.59 44380 permaxrep 44996 ichnfimlem 47464 ichnfim 47465 nfsetrecs 49675 pgind 49706 |
| Copyright terms: Public domain | W3C validator |