![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2161 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbal 2140 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
4 | 3 | nf5i 2119 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1523 Ⅎwnf 1769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-11 2128 ax-12 2143 |
This theorem depends on definitions: df-bi 208 df-ex 1766 df-nf 1770 |
This theorem is referenced by: nfex 2308 nfnf 2310 nfsbv 2314 nfsbvOLD 2315 aaan 2317 pm11.53 2325 19.12vv 2326 2sb8evOLD 2334 cbval2 2390 cbval2OLD 2391 nfsb4t 2495 nfsb4tALT 2560 mof 2605 euf 2623 2eu3 2711 2eu3OLD 2712 axextmo 2775 nfnfc1 2954 nfnfc 2961 sbcnestgf 4296 nfdisj 4948 nfdisj1 4949 axrep1 5089 axrep2 5091 axrep3 5092 axrep4 5093 nffr 5424 zfcndrep 9889 zfcndinf 9893 mreexexd 16752 mptelee 26368 mo5f 29941 19.12b 32657 bj-cbv2v 33671 bj-cbval2v 33674 ax11-pm2 33735 wl-sb8t 34340 wl-mo2tf 34359 wl-eutf 34361 wl-mo2t 34363 wl-mo3t 34364 wl-sb8eut 34365 mpobi123f 34993 pm11.57 40280 pm11.59 40282 dfich2OLD 43120 ichnfim 43128 nfsetrecs 44291 |
Copyright terms: Public domain | W3C validator |