Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2188 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbal 2167 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
4 | 3 | nf5i 2142 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfex 2318 nfnf 2320 nfsbvOLD 2325 aaanOLD 2329 cbval2v 2340 cbval2vOLD 2341 pm11.53 2344 19.12vv 2345 cbval2 2411 nfsb4t 2503 mof 2563 euf 2576 2eu3 2655 axextmo 2713 nfnfc1 2910 nfnfc 2919 nfabdwOLD 2931 sbcnestgfw 4352 sbcnestgf 4357 nfdisjw 5051 nfdisj 5052 nfdisj1 5053 axrep1 5210 axrep2 5212 axrep3 5213 axrep4 5214 nffr 5563 zfcndrep 10370 zfcndinf 10374 mreexexd 17357 mptelee 27263 mo5f 30837 iinabrex 30908 19.12b 33777 bj-cbv2v 34980 ax11-pm2 35019 wl-sb8t 35707 wl-mo2tf 35726 wl-eutf 35728 wl-mo2t 35730 wl-mo3t 35731 wl-sb8eut 35732 mpobi123f 36320 pm11.57 42007 pm11.59 42009 ichnfimlem 44915 ichnfim 44916 nfsetrecs 46392 |
Copyright terms: Public domain | W3C validator |