| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbal 2168 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| 4 | 3 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfex 2323 nfnf 2325 cbval2v 2341 pm11.53 2344 19.12vv 2345 cbval2 2410 nfsb4t 2498 mof 2557 euf 2570 2eu3 2648 axextmo 2706 nfnfc1 2895 nfnfc 2905 sbcnestgfw 4387 sbcnestgf 4392 nfdisjw 5089 nfdisj 5090 nfdisj1 5091 axrep1 5238 axrep2 5240 axrep3 5241 axrep4OLD 5244 nffr 5614 zfcndrep 10574 zfcndinf 10578 mreexexd 17616 mptelee 28829 mo5f 32425 iinabrex 32505 19.12b 35796 bj-cbv2v 36793 ax11-pm2 36831 wl-sb8t 37547 wl-mo2tf 37566 wl-eutf 37568 wl-mo2t 37570 wl-mo3t 37571 wl-sb8eut 37573 wl-sb8eutv 37574 mpobi123f 38163 pm11.57 44385 pm11.59 44387 permaxrep 45003 ichnfimlem 47468 ichnfim 47469 nfsetrecs 49679 pgind 49710 |
| Copyright terms: Public domain | W3C validator |