Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2193 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbal 2171 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
4 | 3 | nf5i 2146 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1541 Ⅎwnf 1791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-10 2141 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1788 df-nf 1792 |
This theorem is referenced by: nfex 2323 nfnf 2325 nfsbvOLD 2330 aaan 2333 cbval2v 2343 cbval2vOLD 2344 pm11.53 2347 19.12vv 2348 cbval2 2410 nfsb4t 2502 mof 2562 euf 2575 2eu3 2654 axextmo 2712 nfnfc1 2907 nfnfc 2916 nfabdwOLD 2928 sbcnestgfw 4333 sbcnestgf 4338 nfdisjw 5030 nfdisj 5031 nfdisj1 5032 axrep1 5180 axrep2 5182 axrep3 5183 axrep4 5184 nffr 5525 zfcndrep 10228 zfcndinf 10232 mreexexd 17151 mptelee 26986 mo5f 30556 iinabrex 30627 19.12b 33496 bj-cbv2v 34717 ax11-pm2 34756 wl-sb8t 35444 wl-mo2tf 35463 wl-eutf 35465 wl-mo2t 35467 wl-mo3t 35468 wl-sb8eut 35469 mpobi123f 36057 pm11.57 41680 pm11.59 41682 ichnfimlem 44588 ichnfim 44589 nfsetrecs 46063 |
Copyright terms: Public domain | W3C validator |