MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfal Structured version   Visualization version   GIF version

Theorem nfal 2322
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfal.1 𝑥𝜑
Assertion
Ref Expression
nfal 𝑥𝑦𝜑

Proof of Theorem nfal
StepHypRef Expression
1 nfal.1 . . . 4 𝑥𝜑
21nf5ri 2196 . . 3 (𝜑 → ∀𝑥𝜑)
32hbal 2168 . 2 (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
43nf5i 2147 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfex  2323  nfnf  2325  cbval2v  2341  pm11.53  2344  19.12vv  2345  cbval2  2410  nfsb4t  2498  mof  2557  euf  2570  2eu3  2648  axextmo  2706  nfnfc1  2895  nfnfc  2905  sbcnestgfw  4387  sbcnestgf  4392  nfdisjw  5089  nfdisj  5090  nfdisj1  5091  axrep1  5238  axrep2  5240  axrep3  5241  axrep4OLD  5244  nffr  5614  zfcndrep  10574  zfcndinf  10578  mreexexd  17616  mptelee  28829  mo5f  32425  iinabrex  32505  19.12b  35796  bj-cbv2v  36793  ax11-pm2  36831  wl-sb8t  37547  wl-mo2tf  37566  wl-eutf  37568  wl-mo2t  37570  wl-mo3t  37571  wl-sb8eut  37573  wl-sb8eutv  37574  mpobi123f  38163  pm11.57  44385  pm11.59  44387  permaxrep  45003  ichnfimlem  47468  ichnfim  47469  nfsetrecs  49679  pgind  49710
  Copyright terms: Public domain W3C validator