| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbal 2168 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| 4 | 3 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfex 2323 nfnf 2325 cbval2v 2341 pm11.53 2344 19.12vv 2345 cbval2 2409 nfsb4t 2497 mof 2556 euf 2569 2eu3 2647 axextmo 2705 nfnfc1 2894 nfnfc 2904 sbcnestgfw 4372 sbcnestgf 4377 nfdisjw 5071 nfdisj 5072 nfdisj1 5073 axrep1 5219 axrep2 5221 axrep3 5222 axrep4OLD 5225 nffr 5592 zfcndrep 10508 zfcndinf 10512 mreexexd 17554 mptelee 28840 mo5f 32433 iinabrex 32513 19.12b 35779 bj-cbv2v 36776 ax11-pm2 36814 wl-sb8t 37530 wl-mo2tf 37549 wl-eutf 37551 wl-mo2t 37553 wl-mo3t 37554 wl-sb8eut 37556 wl-sb8eutv 37557 mpobi123f 38146 pm11.57 44366 pm11.59 44368 permaxrep 44984 ichnfimlem 47451 ichnfim 47452 nfsetrecs 49675 pgind 49706 |
| Copyright terms: Public domain | W3C validator |