![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2196 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbal 2168 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
4 | 3 | nf5i 2146 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfex 2328 nfnf 2330 nfsbvOLD 2335 aaanOLD 2338 cbval2v 2349 pm11.53 2352 19.12vv 2353 cbval2 2419 nfsb4t 2507 mof 2566 euf 2579 2eu3 2657 axextmo 2715 nfnfc1 2911 nfnfc 2921 nfabdwOLD 2933 sbcnestgfw 4444 sbcnestgf 4449 nfdisjw 5145 nfdisj 5146 nfdisj1 5147 axrep1 5304 axrep2 5306 axrep3 5307 axrep4 5308 nffr 5673 zfcndrep 10683 zfcndinf 10687 mreexexd 17706 mptelee 28928 mo5f 32517 iinabrex 32591 19.12b 35765 bj-cbv2v 36764 ax11-pm2 36802 wl-sb8t 37506 wl-mo2tf 37525 wl-eutf 37527 wl-mo2t 37529 wl-mo3t 37530 wl-sb8eut 37532 wl-sb8eutv 37533 mpobi123f 38122 pm11.57 44358 pm11.59 44360 ichnfimlem 47337 ichnfim 47338 nfsetrecs 48778 pgind 48809 |
Copyright terms: Public domain | W3C validator |