Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2191 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbal 2169 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
4 | 3 | nf5i 2144 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfex 2322 nfnf 2324 nfsbvOLD 2329 aaan 2332 cbval2v 2342 cbval2vOLD 2343 pm11.53 2346 19.12vv 2347 cbval2 2411 nfsb4t 2503 mof 2563 euf 2576 2eu3 2655 axextmo 2713 nfnfc1 2909 nfnfc 2918 nfabdwOLD 2930 sbcnestgfw 4349 sbcnestgf 4354 nfdisjw 5047 nfdisj 5048 nfdisj1 5049 axrep1 5206 axrep2 5208 axrep3 5209 axrep4 5210 nffr 5554 zfcndrep 10301 zfcndinf 10305 mreexexd 17274 mptelee 27166 mo5f 30738 iinabrex 30809 19.12b 33683 bj-cbv2v 34907 ax11-pm2 34946 wl-sb8t 35634 wl-mo2tf 35653 wl-eutf 35655 wl-mo2t 35657 wl-mo3t 35658 wl-sb8eut 35659 mpobi123f 36247 pm11.57 41896 pm11.59 41898 ichnfimlem 44803 ichnfim 44804 nfsetrecs 46278 |
Copyright terms: Public domain | W3C validator |