| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfal.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | 2 | hbal 2168 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
| 4 | 3 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfex 2323 nfnf 2325 cbval2v 2341 pm11.53 2344 19.12vv 2345 cbval2 2409 nfsb4t 2497 mof 2556 euf 2569 2eu3 2647 axextmo 2705 nfnfc1 2894 nfnfc 2904 sbcnestgfw 4380 sbcnestgf 4385 nfdisjw 5081 nfdisj 5082 nfdisj1 5083 axrep1 5230 axrep2 5232 axrep3 5233 axrep4OLD 5236 nffr 5604 zfcndrep 10543 zfcndinf 10547 mreexexd 17585 mptelee 28798 mo5f 32391 iinabrex 32471 19.12b 35762 bj-cbv2v 36759 ax11-pm2 36797 wl-sb8t 37513 wl-mo2tf 37532 wl-eutf 37534 wl-mo2t 37536 wl-mo3t 37537 wl-sb8eut 37539 wl-sb8eutv 37540 mpobi123f 38129 pm11.57 44351 pm11.59 44353 permaxrep 44969 ichnfimlem 47437 ichnfim 47438 nfsetrecs 49648 pgind 49679 |
| Copyright terms: Public domain | W3C validator |