![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfal | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∀𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfal.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfal | ⊢ Ⅎ𝑥∀𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2186 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | 2 | hbal 2165 | . 2 ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) |
4 | 3 | nf5i 2140 | 1 ⊢ Ⅎ𝑥∀𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-ex 1780 df-nf 1784 |
This theorem is referenced by: nfex 2315 nfnf 2317 nfsbvOLD 2322 aaanOLD 2326 cbval2v 2337 pm11.53 2340 19.12vv 2341 cbval2 2408 nfsb4t 2496 mof 2555 euf 2568 2eu3 2647 axextmo 2705 nfnfc1 2904 nfnfc 2913 nfabdwOLD 2925 sbcnestgfw 4419 sbcnestgf 4424 nfdisjw 5126 nfdisj 5127 nfdisj1 5128 axrep1 5287 axrep2 5289 axrep3 5290 axrep4 5291 nffr 5651 zfcndrep 10613 zfcndinf 10617 mreexexd 17598 mptelee 28418 mo5f 31994 iinabrex 32065 19.12b 35075 bj-cbv2v 35981 ax11-pm2 36019 wl-sb8t 36722 wl-mo2tf 36741 wl-eutf 36743 wl-mo2t 36745 wl-mo3t 36746 wl-sb8eut 36747 mpobi123f 37335 pm11.57 43452 pm11.59 43454 ichnfimlem 46431 ichnfim 46432 nfsetrecs 47820 pgind 47851 |
Copyright terms: Public domain | W3C validator |