Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hba1w | Structured version Visualization version GIF version |
Description: Weak version of hba1 2293. See comments for ax10w 2127. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
Ref | Expression |
---|---|
hbn1w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
hba1w | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1w.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvalvw 2040 | . . . . . 6 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | notbii 319 | . . . . 5 ⊢ (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓) |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓)) |
5 | 4 | spw 2038 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑) |
6 | 5 | con2i 139 | . 2 ⊢ (∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
7 | 4 | hbn1w 2050 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
8 | 1 | hbn1w 2050 | . . . 4 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
9 | 8 | con1i 147 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
10 | 9 | alimi 1815 | . 2 ⊢ (∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
11 | 6, 7, 10 | 3syl 18 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: exexw 2055 ralidmw 4435 |
Copyright terms: Public domain | W3C validator |