MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hba1w Structured version   Visualization version   GIF version

Theorem hba1w 2050
Description: Weak version of hba1 2290. See comments for ax10w 2125. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.)
Hypothesis
Ref Expression
hbn1w.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
hba1w (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem hba1w
StepHypRef Expression
1 hbn1w.1 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvalvw 2039 . . . . . 6 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
32notbii 320 . . . . 5 (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓)
43a1i 11 . . . 4 (𝑥 = 𝑦 → (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓))
54spw 2037 . . 3 (∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑)
65con2i 139 . 2 (∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥𝜑)
74hbn1w 2049 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑)
81hbn1w 2049 . . . 4 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
98con1i 147 . . 3 (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑)
109alimi 1814 . 2 (∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝑥𝜑)
116, 7, 103syl 18 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  exexw  2054  ralidmw  4438
  Copyright terms: Public domain W3C validator