| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hba1w | Structured version Visualization version GIF version | ||
| Description: Weak version of hba1 2294. See comments for ax10w 2130. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| hbn1w.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| hba1w | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbn1w.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvalvw 2036 | . . . . . 6 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | notbii 320 | . . . . 5 ⊢ (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓) |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓)) |
| 5 | 4 | spw 2034 | . . 3 ⊢ (∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑) |
| 6 | 5 | con2i 139 | . 2 ⊢ (∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
| 7 | 4 | hbn1w 2047 | . 2 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑) |
| 8 | 1 | hbn1w 2047 | . . . 4 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| 9 | 8 | con1i 147 | . . 3 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑) |
| 10 | 9 | alimi 1811 | . 2 ⊢ (∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| 11 | 6, 7, 10 | 3syl 18 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: exexw 2052 ralidmw 4488 |
| Copyright terms: Public domain | W3C validator |