Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbjust | Structured version Visualization version GIF version |
Description: Justification theorem for df-sb 2071 proved from Tarski's FOL axiom schemes. (Contributed by BJ, 22-Jan-2023.) |
Ref | Expression |
---|---|
sbjust | ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 2033 | . . 3 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝑡 ↔ 𝑧 = 𝑡)) | |
2 | equequ2 2034 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | |
3 | 2 | imbi1d 345 | . . . 4 ⊢ (𝑦 = 𝑧 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑧 → 𝜑))) |
4 | 3 | albidv 1928 | . . 3 ⊢ (𝑦 = 𝑧 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
5 | 1, 4 | imbi12d 348 | . 2 ⊢ (𝑦 = 𝑧 → ((𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧 → 𝜑)))) |
6 | 5 | cbvalvw 2044 | 1 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |