MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnae Structured version   Visualization version   GIF version

Theorem hbnae 2432
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker hbnaev 2066 when possible. (Contributed by NM, 13-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
hbnae (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 2431 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21hbn 2295 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by:  hbnaes  2435  eujustALT  2572  bj-hbnaeb  34930  ax6e2nd  42067  ax6e2ndVD  42417  ax6e2ndeqVD  42418  ax6e2ndALT  42439  ax6e2ndeqALT  42440
  Copyright terms: Public domain W3C validator