MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnae Structured version   Visualization version   GIF version

Theorem hbnae 2427
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). Usage of this theorem is discouraged because it depends on ax-13 2367. Use the weaker hbnaev 2058 when possible. (Contributed by NM, 13-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
hbnae (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 2426 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21hbn 2285 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2367
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779
This theorem is referenced by:  hbnaes  2430  eujustALT  2562  bj-hbnaeb  36297  ax6e2nd  43997  ax6e2ndVD  44347  ax6e2ndeqVD  44348  ax6e2ndALT  44369  ax6e2ndeqALT  44370
  Copyright terms: Public domain W3C validator