MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnaew Structured version   Visualization version   GIF version

Theorem nfnaew 2148
Description: All variables are effectively bound in a distinct variable specifier. Version of nfnae 2435 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Mario Carneiro, 11-Aug-2016.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 25-Sep-2024.)
Assertion
Ref Expression
nfnaew 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem nfnaew
StepHypRef Expression
1 hbnaev 2068 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
21nf5i 2145 1 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-nf 1790
This theorem is referenced by:  nfriotadw  7233
  Copyright terms: Public domain W3C validator