MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnaew Structured version   Visualization version   GIF version

Theorem nfnaew 2145
Description: All variables are effectively bound in a distinct variable specifier. Version of nfnae 2433 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 11-Aug-2016.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 25-Sep-2024.)
Assertion
Ref Expression
nfnaew 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem nfnaew
StepHypRef Expression
1 hbnaev 2065 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
21nf5i 2142 1 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1539  wnf 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-nf 1786
This theorem is referenced by:  nfriotadw  7375
  Copyright terms: Public domain W3C validator