Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvdistr1i | Structured version Visualization version GIF version |
Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvdistr1.1 | ⊢ 𝐴 ∈ ℂ |
hvdistr1.2 | ⊢ 𝐵 ∈ ℋ |
hvdistr1.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvdistr1i | ⊢ (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvdistr1.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | hvdistr1.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hvdistr1.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
4 | ax-hvdistr1 29271 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1459 | 1 ⊢ (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvdistr1 29271 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: hvsubsub4i 29322 hvnegdii 29325 pjmulii 29940 lnophmlem2 30280 |
Copyright terms: Public domain | W3C validator |