|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > hvdistr1i | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hvdistr1.1 | ⊢ 𝐴 ∈ ℂ | 
| hvdistr1.2 | ⊢ 𝐵 ∈ ℋ | 
| hvdistr1.3 | ⊢ 𝐶 ∈ ℋ | 
| Ref | Expression | 
|---|---|
| hvdistr1i | ⊢ (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hvdistr1.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | hvdistr1.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hvdistr1.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
| 4 | ax-hvdistr1 31027 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 ℋchba 30938 +ℎ cva 30939 ·ℎ csm 30940 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvdistr1 31027 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: hvsubsub4i 31078 hvnegdii 31081 pjmulii 31696 lnophmlem2 32036 | 
| Copyright terms: Public domain | W3C validator |