Detailed syntax breakdown of Axiom ax-hvdistr1
Step | Hyp | Ref
| Expression |
1 | | cA |
. . . 4
class 𝐴 |
2 | | cc 10800 |
. . . 4
class
ℂ |
3 | 1, 2 | wcel 2108 |
. . 3
wff 𝐴 ∈ ℂ |
4 | | cB |
. . . 4
class 𝐵 |
5 | | chba 29182 |
. . . 4
class
ℋ |
6 | 4, 5 | wcel 2108 |
. . 3
wff 𝐵 ∈ ℋ |
7 | | cC |
. . . 4
class 𝐶 |
8 | 7, 5 | wcel 2108 |
. . 3
wff 𝐶 ∈ ℋ |
9 | 3, 6, 8 | w3a 1085 |
. 2
wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈
ℋ) |
10 | | cva 29183 |
. . . . 5
class
+ℎ |
11 | 4, 7, 10 | co 7255 |
. . . 4
class (𝐵 +ℎ 𝐶) |
12 | | csm 29184 |
. . . 4
class
·ℎ |
13 | 1, 11, 12 | co 7255 |
. . 3
class (𝐴
·ℎ (𝐵 +ℎ 𝐶)) |
14 | 1, 4, 12 | co 7255 |
. . . 4
class (𝐴
·ℎ 𝐵) |
15 | 1, 7, 12 | co 7255 |
. . . 4
class (𝐴
·ℎ 𝐶) |
16 | 14, 15, 10 | co 7255 |
. . 3
class ((𝐴
·ℎ 𝐵) +ℎ (𝐴 ·ℎ 𝐶)) |
17 | 13, 16 | wceq 1539 |
. 2
wff (𝐴
·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴
·ℎ 𝐶)) |
18 | 9, 17 | wi 4 |
1
wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴
·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴
·ℎ 𝐶))) |