Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvnegdii | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvnegdii | ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvsubvali 29361 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
4 | 3 | oveq2i 7279 | . 2 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
5 | neg1cn 12070 | . . 3 ⊢ -1 ∈ ℂ | |
6 | 5, 2 | hvmulcli 29355 | . . 3 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
7 | 5, 1, 6 | hvdistr1i 29392 | . 2 ⊢ (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) |
8 | neg1mulneg1e1 12169 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
9 | 8 | oveq1i 7278 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (1 ·ℎ 𝐵) |
10 | 5, 5, 2 | hvmulassi 29387 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (-1 ·ℎ (-1 ·ℎ 𝐵)) |
11 | ax-hvmulid 29347 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → (1 ·ℎ 𝐵) = 𝐵) | |
12 | 2, 11 | ax-mp 5 | . . . . 5 ⊢ (1 ·ℎ 𝐵) = 𝐵 |
13 | 9, 10, 12 | 3eqtr3i 2775 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵 |
14 | 13 | oveq1i 7278 | . . 3 ⊢ ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
15 | 5, 1 | hvmulcli 29355 | . . . 4 ⊢ (-1 ·ℎ 𝐴) ∈ ℋ |
16 | 5, 6 | hvmulcli 29355 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
17 | 15, 16 | hvcomi 29360 | . . 3 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) |
18 | 2, 1 | hvsubvali 29361 | . . 3 ⊢ (𝐵 −ℎ 𝐴) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
19 | 14, 17, 18 | 3eqtr4i 2777 | . 2 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = (𝐵 −ℎ 𝐴) |
20 | 4, 7, 19 | 3eqtri 2771 | 1 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 (class class class)co 7268 1c1 10856 · cmul 10860 -cneg 11189 ℋchba 29260 +ℎ cva 29261 ·ℎ csm 29262 −ℎ cmv 29266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-hvcom 29342 ax-hfvmul 29346 ax-hvmulid 29347 ax-hvmulass 29348 ax-hvdistr1 29349 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sub 11190 df-neg 11191 df-hvsub 29312 |
This theorem is referenced by: hvnegdi 29408 hisubcomi 29445 normsubi 29482 normpar2i 29497 pjsslem 30020 pjcji 30025 |
Copyright terms: Public domain | W3C validator |