| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvnegdii | Structured version Visualization version GIF version | ||
| Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvnegdii | ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 30956 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | 3 | oveq2i 7401 | . 2 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 5 | neg1cn 12178 | . . 3 ⊢ -1 ∈ ℂ | |
| 6 | 5, 2 | hvmulcli 30950 | . . 3 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 7 | 5, 1, 6 | hvdistr1i 30987 | . 2 ⊢ (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1mulneg1e1 12401 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 9 | 8 | oveq1i 7400 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (1 ·ℎ 𝐵) |
| 10 | 5, 5, 2 | hvmulassi 30982 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (-1 ·ℎ (-1 ·ℎ 𝐵)) |
| 11 | ax-hvmulid 30942 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → (1 ·ℎ 𝐵) = 𝐵) | |
| 12 | 2, 11 | ax-mp 5 | . . . . 5 ⊢ (1 ·ℎ 𝐵) = 𝐵 |
| 13 | 9, 10, 12 | 3eqtr3i 2761 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵 |
| 14 | 13 | oveq1i 7400 | . . 3 ⊢ ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
| 15 | 5, 1 | hvmulcli 30950 | . . . 4 ⊢ (-1 ·ℎ 𝐴) ∈ ℋ |
| 16 | 5, 6 | hvmulcli 30950 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 17 | 15, 16 | hvcomi 30955 | . . 3 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) |
| 18 | 2, 1 | hvsubvali 30956 | . . 3 ⊢ (𝐵 −ℎ 𝐴) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
| 19 | 14, 17, 18 | 3eqtr4i 2763 | . 2 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = (𝐵 −ℎ 𝐴) |
| 20 | 4, 7, 19 | 3eqtri 2757 | 1 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 1c1 11076 · cmul 11080 -cneg 11413 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 −ℎ cmv 30861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hvcom 30937 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-hvsub 30907 |
| This theorem is referenced by: hvnegdi 31003 hisubcomi 31040 normsubi 31077 normpar2i 31092 pjsslem 31615 pjcji 31620 |
| Copyright terms: Public domain | W3C validator |