Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvnegdii | Structured version Visualization version GIF version |
Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvnegdii | ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvsubvali 28955 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
4 | 3 | oveq2i 7181 | . 2 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
5 | neg1cn 11830 | . . 3 ⊢ -1 ∈ ℂ | |
6 | 5, 2 | hvmulcli 28949 | . . 3 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
7 | 5, 1, 6 | hvdistr1i 28986 | . 2 ⊢ (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) |
8 | neg1mulneg1e1 11929 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
9 | 8 | oveq1i 7180 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (1 ·ℎ 𝐵) |
10 | 5, 5, 2 | hvmulassi 28981 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (-1 ·ℎ (-1 ·ℎ 𝐵)) |
11 | ax-hvmulid 28941 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → (1 ·ℎ 𝐵) = 𝐵) | |
12 | 2, 11 | ax-mp 5 | . . . . 5 ⊢ (1 ·ℎ 𝐵) = 𝐵 |
13 | 9, 10, 12 | 3eqtr3i 2769 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵 |
14 | 13 | oveq1i 7180 | . . 3 ⊢ ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
15 | 5, 1 | hvmulcli 28949 | . . . 4 ⊢ (-1 ·ℎ 𝐴) ∈ ℋ |
16 | 5, 6 | hvmulcli 28949 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
17 | 15, 16 | hvcomi 28954 | . . 3 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) |
18 | 2, 1 | hvsubvali 28955 | . . 3 ⊢ (𝐵 −ℎ 𝐴) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
19 | 14, 17, 18 | 3eqtr4i 2771 | . 2 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = (𝐵 −ℎ 𝐴) |
20 | 4, 7, 19 | 3eqtri 2765 | 1 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 (class class class)co 7170 1c1 10616 · cmul 10620 -cneg 10949 ℋchba 28854 +ℎ cva 28855 ·ℎ csm 28856 −ℎ cmv 28860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-hvcom 28936 ax-hfvmul 28940 ax-hvmulid 28941 ax-hvmulass 28942 ax-hvdistr1 28943 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-ltxr 10758 df-sub 10950 df-neg 10951 df-hvsub 28906 |
This theorem is referenced by: hvnegdi 29002 hisubcomi 29039 normsubi 29076 normpar2i 29091 pjsslem 29614 pjcji 29619 |
Copyright terms: Public domain | W3C validator |