| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvnegdii | Structured version Visualization version GIF version | ||
| Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvnegdii | ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 31000 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | 3 | oveq2i 7357 | . 2 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 5 | neg1cn 12110 | . . 3 ⊢ -1 ∈ ℂ | |
| 6 | 5, 2 | hvmulcli 30994 | . . 3 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 7 | 5, 1, 6 | hvdistr1i 31031 | . 2 ⊢ (-1 ·ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) |
| 8 | neg1mulneg1e1 12333 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 9 | 8 | oveq1i 7356 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (1 ·ℎ 𝐵) |
| 10 | 5, 5, 2 | hvmulassi 31026 | . . . . 5 ⊢ ((-1 · -1) ·ℎ 𝐵) = (-1 ·ℎ (-1 ·ℎ 𝐵)) |
| 11 | ax-hvmulid 30986 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → (1 ·ℎ 𝐵) = 𝐵) | |
| 12 | 2, 11 | ax-mp 5 | . . . . 5 ⊢ (1 ·ℎ 𝐵) = 𝐵 |
| 13 | 9, 10, 12 | 3eqtr3i 2762 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) = 𝐵 |
| 14 | 13 | oveq1i 7356 | . . 3 ⊢ ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
| 15 | 5, 1 | hvmulcli 30994 | . . . 4 ⊢ (-1 ·ℎ 𝐴) ∈ ℋ |
| 16 | 5, 6 | hvmulcli 30994 | . . . 4 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 17 | 15, 16 | hvcomi 30999 | . . 3 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = ((-1 ·ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ 𝐴)) |
| 18 | 2, 1 | hvsubvali 31000 | . . 3 ⊢ (𝐵 −ℎ 𝐴) = (𝐵 +ℎ (-1 ·ℎ 𝐴)) |
| 19 | 14, 17, 18 | 3eqtr4i 2764 | . 2 ⊢ ((-1 ·ℎ 𝐴) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐵))) = (𝐵 −ℎ 𝐴) |
| 20 | 4, 7, 19 | 3eqtri 2758 | 1 ⊢ (-1 ·ℎ (𝐴 −ℎ 𝐵)) = (𝐵 −ℎ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 1c1 11007 · cmul 11011 -cneg 11345 ℋchba 30899 +ℎ cva 30900 ·ℎ csm 30901 −ℎ cmv 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-hvcom 30981 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvmulass 30987 ax-hvdistr1 30988 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 df-hvsub 30951 |
| This theorem is referenced by: hvnegdi 31047 hisubcomi 31084 normsubi 31121 normpar2i 31136 pjsslem 31659 pjcji 31664 |
| Copyright terms: Public domain | W3C validator |