HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvnegdii Structured version   Visualization version   GIF version

Theorem hvnegdii 29403
Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvnegdii (-1 · (𝐴 𝐵)) = (𝐵 𝐴)

Proof of Theorem hvnegdii
StepHypRef Expression
1 hvnegdi.1 . . . 4 𝐴 ∈ ℋ
2 hvnegdi.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 29361 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43oveq2i 7279 . 2 (-1 · (𝐴 𝐵)) = (-1 · (𝐴 + (-1 · 𝐵)))
5 neg1cn 12070 . . 3 -1 ∈ ℂ
65, 2hvmulcli 29355 . . 3 (-1 · 𝐵) ∈ ℋ
75, 1, 6hvdistr1i 29392 . 2 (-1 · (𝐴 + (-1 · 𝐵))) = ((-1 · 𝐴) + (-1 · (-1 · 𝐵)))
8 neg1mulneg1e1 12169 . . . . . 6 (-1 · -1) = 1
98oveq1i 7278 . . . . 5 ((-1 · -1) · 𝐵) = (1 · 𝐵)
105, 5, 2hvmulassi 29387 . . . . 5 ((-1 · -1) · 𝐵) = (-1 · (-1 · 𝐵))
11 ax-hvmulid 29347 . . . . . 6 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
122, 11ax-mp 5 . . . . 5 (1 · 𝐵) = 𝐵
139, 10, 123eqtr3i 2775 . . . 4 (-1 · (-1 · 𝐵)) = 𝐵
1413oveq1i 7278 . . 3 ((-1 · (-1 · 𝐵)) + (-1 · 𝐴)) = (𝐵 + (-1 · 𝐴))
155, 1hvmulcli 29355 . . . 4 (-1 · 𝐴) ∈ ℋ
165, 6hvmulcli 29355 . . . 4 (-1 · (-1 · 𝐵)) ∈ ℋ
1715, 16hvcomi 29360 . . 3 ((-1 · 𝐴) + (-1 · (-1 · 𝐵))) = ((-1 · (-1 · 𝐵)) + (-1 · 𝐴))
182, 1hvsubvali 29361 . . 3 (𝐵 𝐴) = (𝐵 + (-1 · 𝐴))
1914, 17, 183eqtr4i 2777 . 2 ((-1 · 𝐴) + (-1 · (-1 · 𝐵))) = (𝐵 𝐴)
204, 7, 193eqtri 2771 1 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  (class class class)co 7268  1c1 10856   · cmul 10860  -cneg 11189  chba 29260   + cva 29261   · csm 29262   cmv 29266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-hvcom 29342  ax-hfvmul 29346  ax-hvmulid 29347  ax-hvmulass 29348  ax-hvdistr1 29349
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-neg 11191  df-hvsub 29312
This theorem is referenced by:  hvnegdi  29408  hisubcomi  29445  normsubi  29482  normpar2i  29497  pjsslem  30020  pjcji  30025
  Copyright terms: Public domain W3C validator