HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvnegdii Structured version   Visualization version   GIF version

Theorem hvnegdii 28997
Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvnegdii (-1 · (𝐴 𝐵)) = (𝐵 𝐴)

Proof of Theorem hvnegdii
StepHypRef Expression
1 hvnegdi.1 . . . 4 𝐴 ∈ ℋ
2 hvnegdi.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 28955 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43oveq2i 7181 . 2 (-1 · (𝐴 𝐵)) = (-1 · (𝐴 + (-1 · 𝐵)))
5 neg1cn 11830 . . 3 -1 ∈ ℂ
65, 2hvmulcli 28949 . . 3 (-1 · 𝐵) ∈ ℋ
75, 1, 6hvdistr1i 28986 . 2 (-1 · (𝐴 + (-1 · 𝐵))) = ((-1 · 𝐴) + (-1 · (-1 · 𝐵)))
8 neg1mulneg1e1 11929 . . . . . 6 (-1 · -1) = 1
98oveq1i 7180 . . . . 5 ((-1 · -1) · 𝐵) = (1 · 𝐵)
105, 5, 2hvmulassi 28981 . . . . 5 ((-1 · -1) · 𝐵) = (-1 · (-1 · 𝐵))
11 ax-hvmulid 28941 . . . . . 6 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
122, 11ax-mp 5 . . . . 5 (1 · 𝐵) = 𝐵
139, 10, 123eqtr3i 2769 . . . 4 (-1 · (-1 · 𝐵)) = 𝐵
1413oveq1i 7180 . . 3 ((-1 · (-1 · 𝐵)) + (-1 · 𝐴)) = (𝐵 + (-1 · 𝐴))
155, 1hvmulcli 28949 . . . 4 (-1 · 𝐴) ∈ ℋ
165, 6hvmulcli 28949 . . . 4 (-1 · (-1 · 𝐵)) ∈ ℋ
1715, 16hvcomi 28954 . . 3 ((-1 · 𝐴) + (-1 · (-1 · 𝐵))) = ((-1 · (-1 · 𝐵)) + (-1 · 𝐴))
182, 1hvsubvali 28955 . . 3 (𝐵 𝐴) = (𝐵 + (-1 · 𝐴))
1914, 17, 183eqtr4i 2771 . 2 ((-1 · 𝐴) + (-1 · (-1 · 𝐵))) = (𝐵 𝐴)
204, 7, 193eqtri 2765 1 (-1 · (𝐴 𝐵)) = (𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2114  (class class class)co 7170  1c1 10616   · cmul 10620  -cneg 10949  chba 28854   + cva 28855   · csm 28856   cmv 28860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-hvcom 28936  ax-hfvmul 28940  ax-hvmulid 28941  ax-hvmulass 28942  ax-hvdistr1 28943
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-ltxr 10758  df-sub 10950  df-neg 10951  df-hvsub 28906
This theorem is referenced by:  hvnegdi  29002  hisubcomi  29039  normsubi  29076  normpar2i  29091  pjsslem  29614  pjcji  29619
  Copyright terms: Public domain W3C validator