![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubdistr2 | Structured version Visualization version GIF version |
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubdistr2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 28442 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
2 | 1 | 3adant2 1122 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
3 | hvmulcl 28442 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
4 | 3 | 3adant1 1121 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
5 | hvsubval 28445 | . . 3 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) | |
6 | 2, 4, 5 | syl2anc 579 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
7 | mulm1 10816 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (-1 · 𝐵) = -𝐵) | |
8 | 7 | oveq1d 6937 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
9 | 8 | adantr 474 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
10 | neg1cn 11496 | . . . . . 6 ⊢ -1 ∈ ℂ | |
11 | ax-hvmulass 28436 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) | |
12 | 10, 11 | mp3an1 1521 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
13 | 9, 12 | eqtr3d 2816 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
14 | 13 | 3adant1 1121 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
15 | 14 | oveq2d 6938 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
16 | negcl 10622 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
17 | ax-hvdistr2 28438 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) | |
18 | 16, 17 | syl3an2 1164 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) |
19 | negsub 10671 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
20 | 19 | 3adant3 1123 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
21 | 20 | oveq1d 6937 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
22 | 18, 21 | eqtr3d 2816 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
23 | 6, 15, 22 | 3eqtr2rd 2821 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 (class class class)co 6922 ℂcc 10270 1c1 10273 + caddc 10275 · cmul 10277 − cmin 10606 -cneg 10607 ℋchba 28348 +ℎ cva 28349 ·ℎ csm 28350 −ℎ cmv 28354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-hfvmul 28434 ax-hvmulass 28436 ax-hvdistr2 28438 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-hvsub 28400 |
This theorem is referenced by: hvmulcan2 28502 |
Copyright terms: Public domain | W3C validator |