![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubdistr2 | Structured version Visualization version GIF version |
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubdistr2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 30915 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
2 | 1 | 3adant2 1128 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
3 | hvmulcl 30915 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
4 | 3 | 3adant1 1127 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
5 | hvsubval 30918 | . . 3 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) | |
6 | 2, 4, 5 | syl2anc 582 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
7 | mulm1 11692 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (-1 · 𝐵) = -𝐵) | |
8 | 7 | oveq1d 7434 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
10 | neg1cn 12364 | . . . . . 6 ⊢ -1 ∈ ℂ | |
11 | ax-hvmulass 30909 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) | |
12 | 10, 11 | mp3an1 1444 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
13 | 9, 12 | eqtr3d 2767 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
14 | 13 | 3adant1 1127 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
15 | 14 | oveq2d 7435 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
16 | negcl 11497 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
17 | ax-hvdistr2 30911 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) | |
18 | 16, 17 | syl3an2 1161 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) |
19 | negsub 11545 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
20 | 19 | 3adant3 1129 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
21 | 20 | oveq1d 7434 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
22 | 18, 21 | eqtr3d 2767 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
23 | 6, 15, 22 | 3eqtr2rd 2772 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 (class class class)co 7419 ℂcc 11143 1c1 11146 + caddc 11148 · cmul 11150 − cmin 11481 -cneg 11482 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 −ℎ cmv 30827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-hfvmul 30907 ax-hvmulass 30909 ax-hvdistr2 30911 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-ltxr 11290 df-sub 11483 df-neg 11484 df-hvsub 30873 |
This theorem is referenced by: hvmulcan2 30975 |
Copyright terms: Public domain | W3C validator |