| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubdistr2 | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubdistr2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl 30985 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
| 2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
| 3 | hvmulcl 30985 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
| 4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
| 5 | hvsubval 30988 | . . 3 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
| 7 | mulm1 11553 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (-1 · 𝐵) = -𝐵) | |
| 8 | 7 | oveq1d 7356 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
| 10 | neg1cn 12105 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 11 | ax-hvmulass 30979 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) | |
| 12 | 10, 11 | mp3an1 1450 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
| 13 | 9, 12 | eqtr3d 2768 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
| 14 | 13 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
| 15 | 14 | oveq2d 7357 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
| 16 | negcl 11355 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
| 17 | ax-hvdistr2 30981 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) | |
| 18 | 16, 17 | syl3an2 1164 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) |
| 19 | negsub 11404 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 20 | 19 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| 21 | 20 | oveq1d 7356 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
| 22 | 18, 21 | eqtr3d 2768 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
| 23 | 6, 15, 22 | 3eqtr2rd 2773 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 1c1 11002 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 ℋchba 30891 +ℎ cva 30892 ·ℎ csm 30893 −ℎ cmv 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-hfvmul 30977 ax-hvmulass 30979 ax-hvdistr2 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 df-hvsub 30943 |
| This theorem is referenced by: hvmulcan2 31045 |
| Copyright terms: Public domain | W3C validator |