| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubdistr2 | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubdistr2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl 30999 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
| 2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
| 3 | hvmulcl 30999 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
| 4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
| 5 | hvsubval 31002 | . . 3 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) | |
| 6 | 2, 4, 5 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
| 7 | mulm1 11683 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (-1 · 𝐵) = -𝐵) | |
| 8 | 7 | oveq1d 7425 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
| 10 | neg1cn 12359 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 11 | ax-hvmulass 30993 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) | |
| 12 | 10, 11 | mp3an1 1450 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
| 13 | 9, 12 | eqtr3d 2773 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
| 14 | 13 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
| 15 | 14 | oveq2d 7426 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
| 16 | negcl 11487 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
| 17 | ax-hvdistr2 30995 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) | |
| 18 | 16, 17 | syl3an2 1164 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) |
| 19 | negsub 11536 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 20 | 19 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| 21 | 20 | oveq1d 7425 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
| 22 | 18, 21 | eqtr3d 2773 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
| 23 | 6, 15, 22 | 3eqtr2rd 2778 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 1c1 11135 + caddc 11137 · cmul 11139 − cmin 11471 -cneg 11472 ℋchba 30905 +ℎ cva 30906 ·ℎ csm 30907 −ℎ cmv 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hfvmul 30991 ax-hvmulass 30993 ax-hvdistr2 30995 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-hvsub 30957 |
| This theorem is referenced by: hvmulcan2 31059 |
| Copyright terms: Public domain | W3C validator |