Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubdistr2 | Structured version Visualization version GIF version |
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubdistr2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 29662 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
2 | 1 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
3 | hvmulcl 29662 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) | |
4 | 3 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ℎ 𝐶) ∈ ℋ) |
5 | hvsubval 29665 | . . 3 ⊢ (((𝐴 ·ℎ 𝐶) ∈ ℋ ∧ (𝐵 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) | |
6 | 2, 4, 5 | syl2anc 585 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
7 | mulm1 11521 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (-1 · 𝐵) = -𝐵) | |
8 | 7 | oveq1d 7356 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
9 | 8 | adantr 482 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-𝐵 ·ℎ 𝐶)) |
10 | neg1cn 12192 | . . . . . 6 ⊢ -1 ∈ ℂ | |
11 | ax-hvmulass 29656 | . . . . . 6 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) | |
12 | 10, 11 | mp3an1 1448 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
13 | 9, 12 | eqtr3d 2779 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
14 | 13 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-𝐵 ·ℎ 𝐶) = (-1 ·ℎ (𝐵 ·ℎ 𝐶))) |
15 | 14 | oveq2d 7357 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐶) +ℎ (-1 ·ℎ (𝐵 ·ℎ 𝐶)))) |
16 | negcl 11326 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
17 | ax-hvdistr2 29658 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) | |
18 | 16, 17 | syl3an2 1164 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶))) |
19 | negsub 11374 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
20 | 19 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
21 | 20 | oveq1d 7356 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + -𝐵) ·ℎ 𝐶) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
22 | 18, 21 | eqtr3d 2779 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐶) +ℎ (-𝐵 ·ℎ 𝐶)) = ((𝐴 − 𝐵) ·ℎ 𝐶)) |
23 | 6, 15, 22 | 3eqtr2rd 2784 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 − 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) −ℎ (𝐵 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 (class class class)co 7341 ℂcc 10974 1c1 10977 + caddc 10979 · cmul 10981 − cmin 11310 -cneg 11311 ℋchba 29568 +ℎ cva 29569 ·ℎ csm 29570 −ℎ cmv 29574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-hfvmul 29654 ax-hvmulass 29656 ax-hvdistr2 29658 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-po 5536 df-so 5537 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-ltxr 11119 df-sub 11312 df-neg 11313 df-hvsub 29620 |
This theorem is referenced by: hvmulcan2 29722 |
Copyright terms: Public domain | W3C validator |