| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubsub4i | Structured version Visualization version GIF version | ||
| Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvass.1 | ⊢ 𝐴 ∈ ℋ |
| hvass.2 | ⊢ 𝐵 ∈ ℋ |
| hvass.3 | ⊢ 𝐶 ∈ ℋ |
| hvadd4.4 | ⊢ 𝐷 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvsubsub4i | ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 2 | neg1cn 12359 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 3 | hvass.2 | . . . . . 6 ⊢ 𝐵 ∈ ℋ | |
| 4 | 2, 3 | hvmulcli 31000 | . . . . 5 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 5 | hvass.3 | . . . . . 6 ⊢ 𝐶 ∈ ℋ | |
| 6 | 2, 5 | hvmulcli 31000 | . . . . 5 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
| 7 | hvadd4.4 | . . . . . . 7 ⊢ 𝐷 ∈ ℋ | |
| 8 | 2, 7 | hvmulcli 31000 | . . . . . 6 ⊢ (-1 ·ℎ 𝐷) ∈ ℋ |
| 9 | 2, 8 | hvmulcli 31000 | . . . . 5 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
| 10 | 1, 4, 6, 9 | hvadd4i 31044 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
| 11 | 2, 5, 8 | hvdistr1i 31037 | . . . . 5 ⊢ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
| 12 | 11 | oveq2i 7421 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
| 13 | 2, 3, 8 | hvdistr1i 31037 | . . . . 5 ⊢ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
| 14 | 13 | oveq2i 7421 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
| 15 | 10, 12, 14 | 3eqtr4i 2769 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
| 16 | 1, 4 | hvaddcli 31004 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 17 | 5, 8 | hvaddcli 31004 | . . . 4 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
| 18 | 16, 17 | hvsubvali 31006 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) |
| 19 | 1, 6 | hvaddcli 31004 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐶)) ∈ ℋ |
| 20 | 3, 8 | hvaddcli 31004 | . . . 4 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
| 21 | 19, 20 | hvsubvali 31006 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
| 22 | 15, 18, 21 | 3eqtr4i 2769 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
| 23 | 1, 3 | hvsubvali 31006 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 24 | 5, 7 | hvsubvali 31006 | . . 3 ⊢ (𝐶 −ℎ 𝐷) = (𝐶 +ℎ (-1 ·ℎ 𝐷)) |
| 25 | 23, 24 | oveq12i 7422 | . 2 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) |
| 26 | 1, 5 | hvsubvali 31006 | . . 3 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
| 27 | 3, 7 | hvsubvali 31006 | . . 3 ⊢ (𝐵 −ℎ 𝐷) = (𝐵 +ℎ (-1 ·ℎ 𝐷)) |
| 28 | 26, 27 | oveq12i 7422 | . 2 ⊢ ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
| 29 | 22, 25, 28 | 3eqtr4i 2769 | 1 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 1c1 11135 -cneg 11472 ℋchba 30905 +ℎ cva 30906 ·ℎ csm 30907 −ℎ cmv 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hfvmul 30991 ax-hvdistr1 30994 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-hvsub 30957 |
| This theorem is referenced by: hvsubsub4 31046 pjsslem 31665 |
| Copyright terms: Public domain | W3C validator |