Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubsub4i | Structured version Visualization version GIF version |
Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvass.1 | ⊢ 𝐴 ∈ ℋ |
hvass.2 | ⊢ 𝐵 ∈ ℋ |
hvass.3 | ⊢ 𝐶 ∈ ℋ |
hvadd4.4 | ⊢ 𝐷 ∈ ℋ |
Ref | Expression |
---|---|
hvsubsub4i | ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvass.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
2 | neg1cn 11789 | . . . . . 6 ⊢ -1 ∈ ℂ | |
3 | hvass.2 | . . . . . 6 ⊢ 𝐵 ∈ ℋ | |
4 | 2, 3 | hvmulcli 28897 | . . . . 5 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
5 | hvass.3 | . . . . . 6 ⊢ 𝐶 ∈ ℋ | |
6 | 2, 5 | hvmulcli 28897 | . . . . 5 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
7 | hvadd4.4 | . . . . . . 7 ⊢ 𝐷 ∈ ℋ | |
8 | 2, 7 | hvmulcli 28897 | . . . . . 6 ⊢ (-1 ·ℎ 𝐷) ∈ ℋ |
9 | 2, 8 | hvmulcli 28897 | . . . . 5 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
10 | 1, 4, 6, 9 | hvadd4i 28941 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
11 | 2, 5, 8 | hvdistr1i 28934 | . . . . 5 ⊢ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
12 | 11 | oveq2i 7162 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
13 | 2, 3, 8 | hvdistr1i 28934 | . . . . 5 ⊢ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
14 | 13 | oveq2i 7162 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
15 | 10, 12, 14 | 3eqtr4i 2792 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
16 | 1, 4 | hvaddcli 28901 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
17 | 5, 8 | hvaddcli 28901 | . . . 4 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
18 | 16, 17 | hvsubvali 28903 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) |
19 | 1, 6 | hvaddcli 28901 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐶)) ∈ ℋ |
20 | 3, 8 | hvaddcli 28901 | . . . 4 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
21 | 19, 20 | hvsubvali 28903 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
22 | 15, 18, 21 | 3eqtr4i 2792 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
23 | 1, 3 | hvsubvali 28903 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
24 | 5, 7 | hvsubvali 28903 | . . 3 ⊢ (𝐶 −ℎ 𝐷) = (𝐶 +ℎ (-1 ·ℎ 𝐷)) |
25 | 23, 24 | oveq12i 7163 | . 2 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) |
26 | 1, 5 | hvsubvali 28903 | . . 3 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
27 | 3, 7 | hvsubvali 28903 | . . 3 ⊢ (𝐵 −ℎ 𝐷) = (𝐵 +ℎ (-1 ·ℎ 𝐷)) |
28 | 26, 27 | oveq12i 7163 | . 2 ⊢ ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
29 | 22, 25, 28 | 3eqtr4i 2792 | 1 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 (class class class)co 7151 1c1 10577 -cneg 10910 ℋchba 28802 +ℎ cva 28803 ·ℎ csm 28804 −ℎ cmv 28808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-hfvadd 28883 ax-hvcom 28884 ax-hvass 28885 ax-hfvmul 28888 ax-hvdistr1 28891 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-ltxr 10719 df-sub 10911 df-neg 10912 df-hvsub 28854 |
This theorem is referenced by: hvsubsub4 28943 pjsslem 29562 |
Copyright terms: Public domain | W3C validator |