Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubsub4i | Structured version Visualization version GIF version |
Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvass.1 | ⊢ 𝐴 ∈ ℋ |
hvass.2 | ⊢ 𝐵 ∈ ℋ |
hvass.3 | ⊢ 𝐶 ∈ ℋ |
hvadd4.4 | ⊢ 𝐷 ∈ ℋ |
Ref | Expression |
---|---|
hvsubsub4i | ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvass.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
2 | neg1cn 12017 | . . . . . 6 ⊢ -1 ∈ ℂ | |
3 | hvass.2 | . . . . . 6 ⊢ 𝐵 ∈ ℋ | |
4 | 2, 3 | hvmulcli 29277 | . . . . 5 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
5 | hvass.3 | . . . . . 6 ⊢ 𝐶 ∈ ℋ | |
6 | 2, 5 | hvmulcli 29277 | . . . . 5 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
7 | hvadd4.4 | . . . . . . 7 ⊢ 𝐷 ∈ ℋ | |
8 | 2, 7 | hvmulcli 29277 | . . . . . 6 ⊢ (-1 ·ℎ 𝐷) ∈ ℋ |
9 | 2, 8 | hvmulcli 29277 | . . . . 5 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
10 | 1, 4, 6, 9 | hvadd4i 29321 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
11 | 2, 5, 8 | hvdistr1i 29314 | . . . . 5 ⊢ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
12 | 11 | oveq2i 7266 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
13 | 2, 3, 8 | hvdistr1i 29314 | . . . . 5 ⊢ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
14 | 13 | oveq2i 7266 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
15 | 10, 12, 14 | 3eqtr4i 2776 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
16 | 1, 4 | hvaddcli 29281 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
17 | 5, 8 | hvaddcli 29281 | . . . 4 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
18 | 16, 17 | hvsubvali 29283 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) |
19 | 1, 6 | hvaddcli 29281 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐶)) ∈ ℋ |
20 | 3, 8 | hvaddcli 29281 | . . . 4 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
21 | 19, 20 | hvsubvali 29283 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
22 | 15, 18, 21 | 3eqtr4i 2776 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
23 | 1, 3 | hvsubvali 29283 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
24 | 5, 7 | hvsubvali 29283 | . . 3 ⊢ (𝐶 −ℎ 𝐷) = (𝐶 +ℎ (-1 ·ℎ 𝐷)) |
25 | 23, 24 | oveq12i 7267 | . 2 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) |
26 | 1, 5 | hvsubvali 29283 | . . 3 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
27 | 3, 7 | hvsubvali 29283 | . . 3 ⊢ (𝐵 −ℎ 𝐷) = (𝐵 +ℎ (-1 ·ℎ 𝐷)) |
28 | 26, 27 | oveq12i 7267 | . 2 ⊢ ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
29 | 22, 25, 28 | 3eqtr4i 2776 | 1 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 1c1 10803 -cneg 11136 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 −ℎ cmv 29188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hfvmul 29268 ax-hvdistr1 29271 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-hvsub 29234 |
This theorem is referenced by: hvsubsub4 29323 pjsslem 29942 |
Copyright terms: Public domain | W3C validator |