![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubsub4i | Structured version Visualization version GIF version |
Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvass.1 | ⊢ 𝐴 ∈ ℋ |
hvass.2 | ⊢ 𝐵 ∈ ℋ |
hvass.3 | ⊢ 𝐶 ∈ ℋ |
hvadd4.4 | ⊢ 𝐷 ∈ ℋ |
Ref | Expression |
---|---|
hvsubsub4i | ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvass.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
2 | neg1cn 12407 | . . . . . 6 ⊢ -1 ∈ ℂ | |
3 | hvass.2 | . . . . . 6 ⊢ 𝐵 ∈ ℋ | |
4 | 2, 3 | hvmulcli 31046 | . . . . 5 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
5 | hvass.3 | . . . . . 6 ⊢ 𝐶 ∈ ℋ | |
6 | 2, 5 | hvmulcli 31046 | . . . . 5 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
7 | hvadd4.4 | . . . . . . 7 ⊢ 𝐷 ∈ ℋ | |
8 | 2, 7 | hvmulcli 31046 | . . . . . 6 ⊢ (-1 ·ℎ 𝐷) ∈ ℋ |
9 | 2, 8 | hvmulcli 31046 | . . . . 5 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
10 | 1, 4, 6, 9 | hvadd4i 31090 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
11 | 2, 5, 8 | hvdistr1i 31083 | . . . . 5 ⊢ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
12 | 11 | oveq2i 7459 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
13 | 2, 3, 8 | hvdistr1i 31083 | . . . . 5 ⊢ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
14 | 13 | oveq2i 7459 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
15 | 10, 12, 14 | 3eqtr4i 2778 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
16 | 1, 4 | hvaddcli 31050 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
17 | 5, 8 | hvaddcli 31050 | . . . 4 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
18 | 16, 17 | hvsubvali 31052 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) |
19 | 1, 6 | hvaddcli 31050 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐶)) ∈ ℋ |
20 | 3, 8 | hvaddcli 31050 | . . . 4 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
21 | 19, 20 | hvsubvali 31052 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
22 | 15, 18, 21 | 3eqtr4i 2778 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
23 | 1, 3 | hvsubvali 31052 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
24 | 5, 7 | hvsubvali 31052 | . . 3 ⊢ (𝐶 −ℎ 𝐷) = (𝐶 +ℎ (-1 ·ℎ 𝐷)) |
25 | 23, 24 | oveq12i 7460 | . 2 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) |
26 | 1, 5 | hvsubvali 31052 | . . 3 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
27 | 3, 7 | hvsubvali 31052 | . . 3 ⊢ (𝐵 −ℎ 𝐷) = (𝐵 +ℎ (-1 ·ℎ 𝐷)) |
28 | 26, 27 | oveq12i 7460 | . 2 ⊢ ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
29 | 22, 25, 28 | 3eqtr4i 2778 | 1 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 1c1 11185 -cneg 11521 ℋchba 30951 +ℎ cva 30952 ·ℎ csm 30953 −ℎ cmv 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hfvmul 31037 ax-hvdistr1 31040 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-hvsub 31003 |
This theorem is referenced by: hvsubsub4 31092 pjsslem 31711 |
Copyright terms: Public domain | W3C validator |