| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubsub4i | Structured version Visualization version GIF version | ||
| Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvass.1 | ⊢ 𝐴 ∈ ℋ |
| hvass.2 | ⊢ 𝐵 ∈ ℋ |
| hvass.3 | ⊢ 𝐶 ∈ ℋ |
| hvadd4.4 | ⊢ 𝐷 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvsubsub4i | ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | . . . . 5 ⊢ 𝐴 ∈ ℋ | |
| 2 | neg1cn 12147 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 3 | hvass.2 | . . . . . 6 ⊢ 𝐵 ∈ ℋ | |
| 4 | 2, 3 | hvmulcli 30916 | . . . . 5 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 5 | hvass.3 | . . . . . 6 ⊢ 𝐶 ∈ ℋ | |
| 6 | 2, 5 | hvmulcli 30916 | . . . . 5 ⊢ (-1 ·ℎ 𝐶) ∈ ℋ |
| 7 | hvadd4.4 | . . . . . . 7 ⊢ 𝐷 ∈ ℋ | |
| 8 | 2, 7 | hvmulcli 30916 | . . . . . 6 ⊢ (-1 ·ℎ 𝐷) ∈ ℋ |
| 9 | 2, 8 | hvmulcli 30916 | . . . . 5 ⊢ (-1 ·ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
| 10 | 1, 4, 6, 9 | hvadd4i 30960 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
| 11 | 2, 5, 8 | hvdistr1i 30953 | . . . . 5 ⊢ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
| 12 | 11 | oveq2i 7380 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ ((-1 ·ℎ 𝐶) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
| 13 | 2, 3, 8 | hvdistr1i 30953 | . . . . 5 ⊢ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷))) |
| 14 | 13 | oveq2i 7380 | . . . 4 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ (-1 ·ℎ 𝐷)))) |
| 15 | 10, 12, 14 | 3eqtr4i 2762 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
| 16 | 1, 4 | hvaddcli 30920 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐵)) ∈ ℋ |
| 17 | 5, 8 | hvaddcli 30920 | . . . 4 ⊢ (𝐶 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
| 18 | 16, 17 | hvsubvali 30922 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) +ℎ (-1 ·ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷)))) |
| 19 | 1, 6 | hvaddcli 30920 | . . . 4 ⊢ (𝐴 +ℎ (-1 ·ℎ 𝐶)) ∈ ℋ |
| 20 | 3, 8 | hvaddcli 30920 | . . . 4 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐷)) ∈ ℋ |
| 21 | 19, 20 | hvsubvali 30922 | . . 3 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) +ℎ (-1 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷)))) |
| 22 | 15, 18, 21 | 3eqtr4i 2762 | . 2 ⊢ ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
| 23 | 1, 3 | hvsubvali 30922 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 24 | 5, 7 | hvsubvali 30922 | . . 3 ⊢ (𝐶 −ℎ 𝐷) = (𝐶 +ℎ (-1 ·ℎ 𝐷)) |
| 25 | 23, 24 | oveq12i 7381 | . 2 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ (𝐶 +ℎ (-1 ·ℎ 𝐷))) |
| 26 | 1, 5 | hvsubvali 30922 | . . 3 ⊢ (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) |
| 27 | 3, 7 | hvsubvali 30922 | . . 3 ⊢ (𝐵 −ℎ 𝐷) = (𝐵 +ℎ (-1 ·ℎ 𝐷)) |
| 28 | 26, 27 | oveq12i 7381 | . 2 ⊢ ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) = ((𝐴 +ℎ (-1 ·ℎ 𝐶)) −ℎ (𝐵 +ℎ (-1 ·ℎ 𝐷))) |
| 29 | 22, 25, 28 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 −ℎ 𝐵) −ℎ (𝐶 −ℎ 𝐷)) = ((𝐴 −ℎ 𝐶) −ℎ (𝐵 −ℎ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 1c1 11045 -cneg 11382 ℋchba 30821 +ℎ cva 30822 ·ℎ csm 30823 −ℎ cmv 30827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-hfvadd 30902 ax-hvcom 30903 ax-hvass 30904 ax-hfvmul 30907 ax-hvdistr1 30910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 df-hvsub 30873 |
| This theorem is referenced by: hvsubsub4 30962 pjsslem 31581 |
| Copyright terms: Public domain | W3C validator |