HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubsub4i Structured version   Visualization version   GIF version

Theorem hvsubsub4i 28393
Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
hvadd4.4 𝐷 ∈ ℋ
Assertion
Ref Expression
hvsubsub4i ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷))

Proof of Theorem hvsubsub4i
StepHypRef Expression
1 hvass.1 . . . . 5 𝐴 ∈ ℋ
2 neg1cn 11397 . . . . . 6 -1 ∈ ℂ
3 hvass.2 . . . . . 6 𝐵 ∈ ℋ
42, 3hvmulcli 28348 . . . . 5 (-1 · 𝐵) ∈ ℋ
5 hvass.3 . . . . . 6 𝐶 ∈ ℋ
62, 5hvmulcli 28348 . . . . 5 (-1 · 𝐶) ∈ ℋ
7 hvadd4.4 . . . . . . 7 𝐷 ∈ ℋ
82, 7hvmulcli 28348 . . . . . 6 (-1 · 𝐷) ∈ ℋ
92, 8hvmulcli 28348 . . . . 5 (-1 · (-1 · 𝐷)) ∈ ℋ
101, 4, 6, 9hvadd4i 28392 . . . 4 ((𝐴 + (-1 · 𝐵)) + ((-1 · 𝐶) + (-1 · (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐶)) + ((-1 · 𝐵) + (-1 · (-1 · 𝐷))))
112, 5, 8hvdistr1i 28385 . . . . 5 (-1 · (𝐶 + (-1 · 𝐷))) = ((-1 · 𝐶) + (-1 · (-1 · 𝐷)))
1211oveq2i 6857 . . . 4 ((𝐴 + (-1 · 𝐵)) + (-1 · (𝐶 + (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐵)) + ((-1 · 𝐶) + (-1 · (-1 · 𝐷))))
132, 3, 8hvdistr1i 28385 . . . . 5 (-1 · (𝐵 + (-1 · 𝐷))) = ((-1 · 𝐵) + (-1 · (-1 · 𝐷)))
1413oveq2i 6857 . . . 4 ((𝐴 + (-1 · 𝐶)) + (-1 · (𝐵 + (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐶)) + ((-1 · 𝐵) + (-1 · (-1 · 𝐷))))
1510, 12, 143eqtr4i 2797 . . 3 ((𝐴 + (-1 · 𝐵)) + (-1 · (𝐶 + (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐶)) + (-1 · (𝐵 + (-1 · 𝐷))))
161, 4hvaddcli 28352 . . . 4 (𝐴 + (-1 · 𝐵)) ∈ ℋ
175, 8hvaddcli 28352 . . . 4 (𝐶 + (-1 · 𝐷)) ∈ ℋ
1816, 17hvsubvali 28354 . . 3 ((𝐴 + (-1 · 𝐵)) − (𝐶 + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐵)) + (-1 · (𝐶 + (-1 · 𝐷))))
191, 6hvaddcli 28352 . . . 4 (𝐴 + (-1 · 𝐶)) ∈ ℋ
203, 8hvaddcli 28352 . . . 4 (𝐵 + (-1 · 𝐷)) ∈ ℋ
2119, 20hvsubvali 28354 . . 3 ((𝐴 + (-1 · 𝐶)) − (𝐵 + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (-1 · (𝐵 + (-1 · 𝐷))))
2215, 18, 213eqtr4i 2797 . 2 ((𝐴 + (-1 · 𝐵)) − (𝐶 + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) − (𝐵 + (-1 · 𝐷)))
231, 3hvsubvali 28354 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
245, 7hvsubvali 28354 . . 3 (𝐶 𝐷) = (𝐶 + (-1 · 𝐷))
2523, 24oveq12i 6858 . 2 ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 + (-1 · 𝐵)) − (𝐶 + (-1 · 𝐷)))
261, 5hvsubvali 28354 . . 3 (𝐴 𝐶) = (𝐴 + (-1 · 𝐶))
273, 7hvsubvali 28354 . . 3 (𝐵 𝐷) = (𝐵 + (-1 · 𝐷))
2826, 27oveq12i 6858 . 2 ((𝐴 𝐶) − (𝐵 𝐷)) = ((𝐴 + (-1 · 𝐶)) − (𝐵 + (-1 · 𝐷)))
2922, 25, 283eqtr4i 2797 1 ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  wcel 2155  (class class class)co 6846  1c1 10194  -cneg 10525  chba 28253   + cva 28254   · csm 28255   cmv 28259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-hfvadd 28334  ax-hvcom 28335  ax-hvass 28336  ax-hfvmul 28339  ax-hvdistr1 28342
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-ltxr 10337  df-sub 10526  df-neg 10527  df-hvsub 28305
This theorem is referenced by:  hvsubsub4  28394  pjsslem  29015
  Copyright terms: Public domain W3C validator