HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem2 Structured version   Visualization version   GIF version

Theorem lnophmlem2 29788
Description: Lemma for lnophmi 29789. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1 𝐴 ∈ ℋ
lnophmlem.2 𝐵 ∈ ℋ
lnophmlem.3 𝑇 ∈ LinOp
lnophmlem.4 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
Assertion
Ref Expression
lnophmlem2 (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑇

Proof of Theorem lnophmlem2
StepHypRef Expression
1 lnophmlem.2 . . . . . 6 𝐵 ∈ ℋ
2 lnophmlem.1 . . . . . . 7 𝐴 ∈ ℋ
3 lnophmlem.3 . . . . . . . . 9 𝑇 ∈ LinOp
43lnopfi 29740 . . . . . . . 8 𝑇: ℋ⟶ ℋ
54ffvelrni 6845 . . . . . . 7 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
62, 5ax-mp 5 . . . . . 6 (𝑇𝐴) ∈ ℋ
74ffvelrni 6845 . . . . . . 7 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
81, 7ax-mp 5 . . . . . 6 (𝑇𝐵) ∈ ℋ
91, 6, 2, 8polid2i 28928 . . . . 5 (𝐵 ·ih (𝑇𝐴)) = (((((𝐵 + 𝐴) ·ih ((𝑇𝐵) + (𝑇𝐴))) − ((𝐵 𝐴) ·ih ((𝑇𝐵) − (𝑇𝐴)))) + (i · (((𝐵 + (i · 𝐴)) ·ih ((𝑇𝐵) + (i · (𝑇𝐴)))) − ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴))))))) / 4)
101, 2hvcomi 28790 . . . . . . . . 9 (𝐵 + 𝐴) = (𝐴 + 𝐵)
118, 6hvcomi 28790 . . . . . . . . . 10 ((𝑇𝐵) + (𝑇𝐴)) = ((𝑇𝐴) + (𝑇𝐵))
123lnopaddi 29742 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵)))
132, 1, 12mp2an 690 . . . . . . . . . 10 (𝑇‘(𝐴 + 𝐵)) = ((𝑇𝐴) + (𝑇𝐵))
1411, 13eqtr4i 2847 . . . . . . . . 9 ((𝑇𝐵) + (𝑇𝐴)) = (𝑇‘(𝐴 + 𝐵))
1510, 14oveq12i 7162 . . . . . . . 8 ((𝐵 + 𝐴) ·ih ((𝑇𝐵) + (𝑇𝐴))) = ((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵)))
161, 2, 8, 6hisubcomi 28875 . . . . . . . . 9 ((𝐵 𝐴) ·ih ((𝑇𝐵) − (𝑇𝐴))) = ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵)))
173lnopsubi 29745 . . . . . . . . . . 11 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
182, 1, 17mp2an 690 . . . . . . . . . 10 (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵))
1918oveq2i 7161 . . . . . . . . 9 ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵))) = ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵)))
2016, 19eqtr4i 2847 . . . . . . . 8 ((𝐵 𝐴) ·ih ((𝑇𝐵) − (𝑇𝐴))) = ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))
2115, 20oveq12i 7162 . . . . . . 7 (((𝐵 + 𝐴) ·ih ((𝑇𝐵) + (𝑇𝐴))) − ((𝐵 𝐴) ·ih ((𝑇𝐵) − (𝑇𝐴)))) = (((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵))))
22 ax-icn 10590 . . . . . . . . . . 11 i ∈ ℂ
2322, 1hvmulcli 28785 . . . . . . . . . . . 12 (i · 𝐵) ∈ ℋ
242, 23hvsubcli 28792 . . . . . . . . . . 11 (𝐴 (i · 𝐵)) ∈ ℋ
254ffvelrni 6845 . . . . . . . . . . . 12 ((𝐴 (i · 𝐵)) ∈ ℋ → (𝑇‘(𝐴 (i · 𝐵))) ∈ ℋ)
2624, 25ax-mp 5 . . . . . . . . . . 11 (𝑇‘(𝐴 (i · 𝐵))) ∈ ℋ
2722, 22, 24, 26his35i 28860 . . . . . . . . . 10 ((i · (𝐴 (i · 𝐵))) ·ih (i · (𝑇‘(𝐴 (i · 𝐵))))) = ((i · (∗‘i)) · ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))))
2822, 2, 23hvsubdistr1i 28823 . . . . . . . . . . . 12 (i · (𝐴 (i · 𝐵))) = ((i · 𝐴) − (i · (i · 𝐵)))
2922, 2hvmulcli 28785 . . . . . . . . . . . . . 14 (i · 𝐴) ∈ ℋ
3022, 23hvmulcli 28785 . . . . . . . . . . . . . 14 (i · (i · 𝐵)) ∈ ℋ
3129, 30hvsubvali 28791 . . . . . . . . . . . . 13 ((i · 𝐴) − (i · (i · 𝐵))) = ((i · 𝐴) + (-1 · (i · (i · 𝐵))))
3222, 22, 1hvmulassi 28817 . . . . . . . . . . . . . . . 16 ((i · i) · 𝐵) = (i · (i · 𝐵))
3332oveq2i 7161 . . . . . . . . . . . . . . 15 (-1 · ((i · i) · 𝐵)) = (-1 · (i · (i · 𝐵)))
34 ixi 11263 . . . . . . . . . . . . . . . . . . 19 (i · i) = -1
3534oveq2i 7161 . . . . . . . . . . . . . . . . . 18 (-1 · (i · i)) = (-1 · -1)
36 ax-1cn 10589 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3736, 36mul2negi 11082 . . . . . . . . . . . . . . . . . 18 (-1 · -1) = (1 · 1)
38 1t1e1 11793 . . . . . . . . . . . . . . . . . 18 (1 · 1) = 1
3935, 37, 383eqtri 2848 . . . . . . . . . . . . . . . . 17 (-1 · (i · i)) = 1
4039oveq1i 7160 . . . . . . . . . . . . . . . 16 ((-1 · (i · i)) · 𝐵) = (1 · 𝐵)
41 neg1cn 11745 . . . . . . . . . . . . . . . . 17 -1 ∈ ℂ
4222, 22mulcli 10642 . . . . . . . . . . . . . . . . 17 (i · i) ∈ ℂ
4341, 42, 1hvmulassi 28817 . . . . . . . . . . . . . . . 16 ((-1 · (i · i)) · 𝐵) = (-1 · ((i · i) · 𝐵))
44 ax-hvmulid 28777 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℋ → (1 · 𝐵) = 𝐵)
451, 44ax-mp 5 . . . . . . . . . . . . . . . 16 (1 · 𝐵) = 𝐵
4640, 43, 453eqtr3i 2852 . . . . . . . . . . . . . . 15 (-1 · ((i · i) · 𝐵)) = 𝐵
4733, 46eqtr3i 2846 . . . . . . . . . . . . . 14 (-1 · (i · (i · 𝐵))) = 𝐵
4847oveq2i 7161 . . . . . . . . . . . . 13 ((i · 𝐴) + (-1 · (i · (i · 𝐵)))) = ((i · 𝐴) + 𝐵)
4931, 48eqtri 2844 . . . . . . . . . . . 12 ((i · 𝐴) − (i · (i · 𝐵))) = ((i · 𝐴) + 𝐵)
5029, 1hvcomi 28790 . . . . . . . . . . . 12 ((i · 𝐴) + 𝐵) = (𝐵 + (i · 𝐴))
5128, 49, 503eqtri 2848 . . . . . . . . . . 11 (i · (𝐴 (i · 𝐵))) = (𝐵 + (i · 𝐴))
5251fveq2i 6668 . . . . . . . . . . . 12 (𝑇‘(i · (𝐴 (i · 𝐵)))) = (𝑇‘(𝐵 + (i · 𝐴)))
533lnopmuli 29743 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ (𝐴 (i · 𝐵)) ∈ ℋ) → (𝑇‘(i · (𝐴 (i · 𝐵)))) = (i · (𝑇‘(𝐴 (i · 𝐵)))))
5422, 24, 53mp2an 690 . . . . . . . . . . . 12 (𝑇‘(i · (𝐴 (i · 𝐵)))) = (i · (𝑇‘(𝐴 (i · 𝐵))))
553lnopaddmuli 29744 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇‘(𝐵 + (i · 𝐴))) = ((𝑇𝐵) + (i · (𝑇𝐴))))
5622, 1, 2, 55mp3an 1457 . . . . . . . . . . . 12 (𝑇‘(𝐵 + (i · 𝐴))) = ((𝑇𝐵) + (i · (𝑇𝐴)))
5752, 54, 563eqtr3i 2852 . . . . . . . . . . 11 (i · (𝑇‘(𝐴 (i · 𝐵)))) = ((𝑇𝐵) + (i · (𝑇𝐴)))
5851, 57oveq12i 7162 . . . . . . . . . 10 ((i · (𝐴 (i · 𝐵))) ·ih (i · (𝑇‘(𝐴 (i · 𝐵))))) = ((𝐵 + (i · 𝐴)) ·ih ((𝑇𝐵) + (i · (𝑇𝐴))))
59 cji 14512 . . . . . . . . . . . . . 14 (∗‘i) = -i
6059oveq2i 7161 . . . . . . . . . . . . 13 (i · (∗‘i)) = (i · -i)
6122, 22mulneg2i 11081 . . . . . . . . . . . . 13 (i · -i) = -(i · i)
6234negeqi 10873 . . . . . . . . . . . . . 14 -(i · i) = --1
63 negneg1e1 11749 . . . . . . . . . . . . . 14 --1 = 1
6462, 63eqtri 2844 . . . . . . . . . . . . 13 -(i · i) = 1
6560, 61, 643eqtri 2848 . . . . . . . . . . . 12 (i · (∗‘i)) = 1
6665oveq1i 7160 . . . . . . . . . . 11 ((i · (∗‘i)) · ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))) = (1 · ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))))
67 lnophmlem.4 . . . . . . . . . . . . . 14 𝑥 ∈ ℋ (𝑥 ·ih (𝑇𝑥)) ∈ ℝ
6824, 2, 3, 67lnophmlem1 29787 . . . . . . . . . . . . 13 ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) ∈ ℝ
6968recni 10649 . . . . . . . . . . . 12 ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) ∈ ℂ
7069mulid2i 10640 . . . . . . . . . . 11 (1 · ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))) = ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))
7166, 70eqtri 2844 . . . . . . . . . 10 ((i · (∗‘i)) · ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))) = ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))
7227, 58, 713eqtr3i 2852 . . . . . . . . 9 ((𝐵 + (i · 𝐴)) ·ih ((𝑇𝐵) + (i · (𝑇𝐴)))) = ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))
7322, 6hvmulcli 28785 . . . . . . . . . . . 12 (i · (𝑇𝐴)) ∈ ℋ
741, 29, 8, 73hisubcomi 28875 . . . . . . . . . . 11 ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴)))) = (((i · 𝐴) − 𝐵) ·ih ((i · (𝑇𝐴)) − (𝑇𝐵)))
7534oveq1i 7160 . . . . . . . . . . . . . . 15 ((i · i) · 𝐵) = (-1 · 𝐵)
7632, 75eqtr3i 2846 . . . . . . . . . . . . . 14 (i · (i · 𝐵)) = (-1 · 𝐵)
7776oveq2i 7161 . . . . . . . . . . . . 13 ((i · 𝐴) + (i · (i · 𝐵))) = ((i · 𝐴) + (-1 · 𝐵))
7822, 2, 23hvdistr1i 28822 . . . . . . . . . . . . 13 (i · (𝐴 + (i · 𝐵))) = ((i · 𝐴) + (i · (i · 𝐵)))
7929, 1hvsubvali 28791 . . . . . . . . . . . . 13 ((i · 𝐴) − 𝐵) = ((i · 𝐴) + (-1 · 𝐵))
8077, 78, 793eqtr4i 2854 . . . . . . . . . . . 12 (i · (𝐴 + (i · 𝐵))) = ((i · 𝐴) − 𝐵)
8180fveq2i 6668 . . . . . . . . . . . . 13 (𝑇‘(i · (𝐴 + (i · 𝐵)))) = (𝑇‘((i · 𝐴) − 𝐵))
822, 23hvaddcli 28789 . . . . . . . . . . . . . 14 (𝐴 + (i · 𝐵)) ∈ ℋ
833lnopmuli 29743 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (𝐴 + (i · 𝐵)) ∈ ℋ) → (𝑇‘(i · (𝐴 + (i · 𝐵)))) = (i · (𝑇‘(𝐴 + (i · 𝐵)))))
8422, 82, 83mp2an 690 . . . . . . . . . . . . 13 (𝑇‘(i · (𝐴 + (i · 𝐵)))) = (i · (𝑇‘(𝐴 + (i · 𝐵))))
853lnopmulsubi 29747 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘((i · 𝐴) − 𝐵)) = ((i · (𝑇𝐴)) − (𝑇𝐵)))
8622, 2, 1, 85mp3an 1457 . . . . . . . . . . . . 13 (𝑇‘((i · 𝐴) − 𝐵)) = ((i · (𝑇𝐴)) − (𝑇𝐵))
8781, 84, 863eqtr3i 2852 . . . . . . . . . . . 12 (i · (𝑇‘(𝐴 + (i · 𝐵)))) = ((i · (𝑇𝐴)) − (𝑇𝐵))
8880, 87oveq12i 7162 . . . . . . . . . . 11 ((i · (𝐴 + (i · 𝐵))) ·ih (i · (𝑇‘(𝐴 + (i · 𝐵))))) = (((i · 𝐴) − 𝐵) ·ih ((i · (𝑇𝐴)) − (𝑇𝐵)))
8974, 88eqtr4i 2847 . . . . . . . . . 10 ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴)))) = ((i · (𝐴 + (i · 𝐵))) ·ih (i · (𝑇‘(𝐴 + (i · 𝐵)))))
904ffvelrni 6845 . . . . . . . . . . . 12 ((𝐴 + (i · 𝐵)) ∈ ℋ → (𝑇‘(𝐴 + (i · 𝐵))) ∈ ℋ)
9182, 90ax-mp 5 . . . . . . . . . . 11 (𝑇‘(𝐴 + (i · 𝐵))) ∈ ℋ
9222, 22, 82, 91his35i 28860 . . . . . . . . . 10 ((i · (𝐴 + (i · 𝐵))) ·ih (i · (𝑇‘(𝐴 + (i · 𝐵))))) = ((i · (∗‘i)) · ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))
9365oveq1i 7160 . . . . . . . . . . 11 ((i · (∗‘i)) · ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) = (1 · ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))
9482, 2, 3, 67lnophmlem1 29787 . . . . . . . . . . . . 13 ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) ∈ ℝ
9594recni 10649 . . . . . . . . . . . 12 ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) ∈ ℂ
9695mulid2i 10640 . . . . . . . . . . 11 (1 · ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) = ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))
9793, 96eqtri 2844 . . . . . . . . . 10 ((i · (∗‘i)) · ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) = ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))
9889, 92, 973eqtri 2848 . . . . . . . . 9 ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴)))) = ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))
9972, 98oveq12i 7162 . . . . . . . 8 (((𝐵 + (i · 𝐴)) ·ih ((𝑇𝐵) + (i · (𝑇𝐴)))) − ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴))))) = (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))
10099oveq2i 7161 . . . . . . 7 (i · (((𝐵 + (i · 𝐴)) ·ih ((𝑇𝐵) + (i · (𝑇𝐴)))) − ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴)))))) = (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))
10121, 100oveq12i 7162 . . . . . 6 ((((𝐵 + 𝐴) ·ih ((𝑇𝐵) + (𝑇𝐴))) − ((𝐵 𝐴) ·ih ((𝑇𝐵) − (𝑇𝐴)))) + (i · (((𝐵 + (i · 𝐴)) ·ih ((𝑇𝐵) + (i · (𝑇𝐴)))) − ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴))))))) = ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))
102101oveq1i 7160 . . . . 5 (((((𝐵 + 𝐴) ·ih ((𝑇𝐵) + (𝑇𝐴))) − ((𝐵 𝐴) ·ih ((𝑇𝐵) − (𝑇𝐴)))) + (i · (((𝐵 + (i · 𝐴)) ·ih ((𝑇𝐵) + (i · (𝑇𝐴)))) − ((𝐵 (i · 𝐴)) ·ih ((𝑇𝐵) − (i · (𝑇𝐴))))))) / 4) = (((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) / 4)
1039, 102eqtri 2844 . . . 4 (𝐵 ·ih (𝑇𝐴)) = (((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) / 4)
104103fveq2i 6668 . . 3 (∗‘(𝐵 ·ih (𝑇𝐴))) = (∗‘(((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) / 4))
105 4ne0 11739 . . . 4 4 ≠ 0
1062, 1hvaddcli 28789 . . . . . . . . 9 (𝐴 + 𝐵) ∈ ℋ
107106, 2, 3, 67lnophmlem1 29787 . . . . . . . 8 ((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) ∈ ℝ
1082, 1hvsubcli 28792 . . . . . . . . 9 (𝐴 𝐵) ∈ ℋ
109108, 2, 3, 67lnophmlem1 29787 . . . . . . . 8 ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵))) ∈ ℝ
110107, 109resubcli 10942 . . . . . . 7 (((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) ∈ ℝ
111110recni 10649 . . . . . 6 (((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) ∈ ℂ
11268, 94resubcli 10942 . . . . . . . 8 (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) ∈ ℝ
113112recni 10649 . . . . . . 7 (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) ∈ ℂ
11422, 113mulcli 10642 . . . . . 6 (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))) ∈ ℂ
115111, 114addcli 10641 . . . . 5 ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) ∈ ℂ
116 4re 11715 . . . . . 6 4 ∈ ℝ
117116recni 10649 . . . . 5 4 ∈ ℂ
118115, 117cjdivi 14544 . . . 4 (4 ≠ 0 → (∗‘(((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) / 4)) = ((∗‘((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))) / (∗‘4)))
119105, 118ax-mp 5 . . 3 (∗‘(((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) / 4)) = ((∗‘((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))) / (∗‘4))
120 cjreim 14513 . . . . . . 7 (((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) ∈ ℝ ∧ (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) ∈ ℝ) → (∗‘((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))) = ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) − (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))))
121110, 112, 120mp2an 690 . . . . . 6 (∗‘((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))) = ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) − (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))
12282, 1, 3, 67lnophmlem1 29787 . . . . . . . . . 10 ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) ∈ ℝ
12368, 122resubcli 10942 . . . . . . . . 9 (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) ∈ ℝ
124123recni 10649 . . . . . . . 8 (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) ∈ ℂ
12522, 124mulcli 10642 . . . . . . 7 (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))) ∈ ℂ
126111, 125negsubi 10958 . . . . . 6 ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + -(i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) = ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) − (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))
127121, 126eqtr4i 2847 . . . . 5 (∗‘((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))) = ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + -(i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))
12822, 113mulneg2i 11081 . . . . . . 7 (i · -(((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))) = -(i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))
12969, 95negsubdi2i 10966 . . . . . . . 8 -(((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))) = (((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) − ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))))
130129oveq2i 7161 . . . . . . 7 (i · -(((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))) = (i · (((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) − ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))))
131128, 130eqtr3i 2846 . . . . . 6 -(i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))) = (i · (((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) − ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))))
132131oveq2i 7161 . . . . 5 ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + -(i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵))))))) = ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) − ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))))))
13313oveq2i 7161 . . . . . . 7 ((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) = ((𝐴 + 𝐵) ·ih ((𝑇𝐴) + (𝑇𝐵)))
134133, 19oveq12i 7162 . . . . . 6 (((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) = (((𝐴 + 𝐵) ·ih ((𝑇𝐴) + (𝑇𝐵))) − ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵))))
1353lnopaddmuli 29744 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵))))
13622, 2, 1, 135mp3an 1457 . . . . . . . . 9 (𝑇‘(𝐴 + (i · 𝐵))) = ((𝑇𝐴) + (i · (𝑇𝐵)))
137136oveq2i 7161 . . . . . . . 8 ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) = ((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵))))
1383lnopsubmuli 29746 . . . . . . . . . 10 ((i ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵))))
13922, 2, 1, 138mp3an 1457 . . . . . . . . 9 (𝑇‘(𝐴 (i · 𝐵))) = ((𝑇𝐴) − (i · (𝑇𝐵)))
140139oveq2i 7161 . . . . . . . 8 ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) = ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵))))
141137, 140oveq12i 7162 . . . . . . 7 (((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) − ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))) = (((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵)))) − ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵)))))
142141oveq2i 7161 . . . . . 6 (i · (((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) − ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))))) = (i · (((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵)))) − ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵))))))
143134, 142oveq12i 7162 . . . . 5 ((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))) − ((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵))))))) = ((((𝐴 + 𝐵) ·ih ((𝑇𝐴) + (𝑇𝐵))) − ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵)))) + (i · (((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵)))) − ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵)))))))
144127, 132, 1433eqtri 2848 . . . 4 (∗‘((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))) = ((((𝐴 + 𝐵) ·ih ((𝑇𝐴) + (𝑇𝐵))) − ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵)))) + (i · (((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵)))) − ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵)))))))
145 cjre 14492 . . . . 5 (4 ∈ ℝ → (∗‘4) = 4)
146116, 145ax-mp 5 . . . 4 (∗‘4) = 4
147144, 146oveq12i 7162 . . 3 ((∗‘((((𝐴 + 𝐵) ·ih (𝑇‘(𝐴 + 𝐵))) − ((𝐴 𝐵) ·ih (𝑇‘(𝐴 𝐵)))) + (i · (((𝐴 (i · 𝐵)) ·ih (𝑇‘(𝐴 (i · 𝐵)))) − ((𝐴 + (i · 𝐵)) ·ih (𝑇‘(𝐴 + (i · 𝐵)))))))) / (∗‘4)) = (((((𝐴 + 𝐵) ·ih ((𝑇𝐴) + (𝑇𝐵))) − ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵)))) + (i · (((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵)))) − ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵))))))) / 4)
148104, 119, 1473eqtrri 2849 . 2 (((((𝐴 + 𝐵) ·ih ((𝑇𝐴) + (𝑇𝐵))) − ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵)))) + (i · (((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵)))) − ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵))))))) / 4) = (∗‘(𝐵 ·ih (𝑇𝐴)))
1492, 8, 1, 6polid2i 28928 . 2 (𝐴 ·ih (𝑇𝐵)) = (((((𝐴 + 𝐵) ·ih ((𝑇𝐴) + (𝑇𝐵))) − ((𝐴 𝐵) ·ih ((𝑇𝐴) − (𝑇𝐵)))) + (i · (((𝐴 + (i · 𝐵)) ·ih ((𝑇𝐴) + (i · (𝑇𝐵)))) − ((𝐴 (i · 𝐵)) ·ih ((𝑇𝐴) − (i · (𝑇𝐵))))))) / 4)
1506, 1his1i 28871 . 2 ((𝑇𝐴) ·ih 𝐵) = (∗‘(𝐵 ·ih (𝑇𝐴)))
151148, 149, 1503eqtr4i 2854 1 (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  wne 3016  wral 3138  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532  ici 10533   + caddc 10534   · cmul 10536  cmin 10864  -cneg 10865   / cdiv 11291  4c4 11688  ccj 14449  chba 28690   + cva 28691   · csm 28692   ·ih csp 28693   cmv 28696  LinOpclo 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-hilex 28770  ax-hfvadd 28771  ax-hvcom 28772  ax-hvass 28773  ax-hv0cl 28774  ax-hvaddid 28775  ax-hfvmul 28776  ax-hvmulid 28777  ax-hvmulass 28778  ax-hvdistr1 28779  ax-hvdistr2 28780  ax-hvmul0 28781  ax-hfi 28850  ax-his1 28853  ax-his2 28854  ax-his3 28855
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-3 11695  df-4 11696  df-cj 14452  df-re 14453  df-im 14454  df-hvsub 28742  df-lnop 29612
This theorem is referenced by:  lnophmi  29789
  Copyright terms: Public domain W3C validator