Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulassi | Structured version Visualization version GIF version |
Description: Scalar multiplication associative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcom.1 | ⊢ 𝐴 ∈ ℂ |
hvmulcom.2 | ⊢ 𝐵 ∈ ℂ |
hvmulcom.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvmulassi | ⊢ ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcom.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | hvmulcom.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | hvmulcom.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
4 | ax-hvmulass 28942 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1462 | 1 ⊢ ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 (class class class)co 7170 ℂcc 10613 · cmul 10620 ℋchba 28854 ·ℎ csm 28856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-hvmulass 28942 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: hvmul2negi 28983 hvnegdii 28997 normlem0 29044 lnophmlem2 29952 |
Copyright terms: Public domain | W3C validator |