HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Structured version   Visualization version   GIF version

Theorem normlem0 29471
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
Assertion
Ref Expression
normlem0 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5 𝐹 ∈ ℋ
2 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
42, 3hvmulcli 29376 . . . . 5 (𝑆 · 𝐺) ∈ ℋ
51, 4hvsubvali 29382 . . . 4 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
62mulm1i 11420 . . . . . . 7 (-1 · 𝑆) = -𝑆
76oveq1i 7285 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-𝑆 · 𝐺)
8 neg1cn 12087 . . . . . . 7 -1 ∈ ℂ
98, 2, 3hvmulassi 29408 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-1 · (𝑆 · 𝐺))
107, 9eqtr3i 2768 . . . . 5 (-𝑆 · 𝐺) = (-1 · (𝑆 · 𝐺))
1110oveq2i 7286 . . . 4 (𝐹 + (-𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
125, 11eqtr4i 2769 . . 3 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-𝑆 · 𝐺))
1312, 12oveq12i 7287 . 2 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺)))
142negcli 11289 . . . 4 -𝑆 ∈ ℂ
1514, 3hvmulcli 29376 . . 3 (-𝑆 · 𝐺) ∈ ℋ
161, 15hvaddcli 29380 . . 3 (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ
17 ax-his2 29445 . . 3 ((𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))))
181, 15, 16, 17mp3an 1460 . 2 ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))))
19 his7 29452 . . . . 5 ((𝐹 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))))
201, 1, 15, 19mp3an 1460 . . . 4 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺)))
21 his5 29448 . . . . . . 7 ((-𝑆 ∈ ℂ ∧ 𝐹 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺)))
2214, 1, 3, 21mp3an 1460 . . . . . 6 (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺))
232cjnegi 14893 . . . . . . 7 (∗‘-𝑆) = -(∗‘𝑆)
2423oveq1i 7285 . . . . . 6 ((∗‘-𝑆) · (𝐹 ·ih 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2522, 24eqtri 2766 . . . . 5 (𝐹 ·ih (-𝑆 · 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2625oveq2i 7286 . . . 4 ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
2720, 26eqtri 2766 . . 3 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
28 ax-his3 29446 . . . . 5 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))))
2914, 3, 16, 28mp3an 1460 . . . 4 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))))
30 his7 29452 . . . . . . 7 ((𝐺 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))))
313, 1, 15, 30mp3an 1460 . . . . . 6 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺)))
32 his5 29448 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3314, 3, 3, 32mp3an 1460 . . . . . . 7 (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺))
3433oveq2i 7286 . . . . . 6 ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3531, 34eqtri 2766 . . . . 5 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3635oveq2i 7286 . . . 4 (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))) = (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
373, 1hicli 29443 . . . . . 6 (𝐺 ·ih 𝐹) ∈ ℂ
3814cjcli 14880 . . . . . . 7 (∗‘-𝑆) ∈ ℂ
393, 3hicli 29443 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
4038, 39mulcli 10982 . . . . . 6 ((∗‘-𝑆) · (𝐺 ·ih 𝐺)) ∈ ℂ
4114, 37, 40adddii 10987 . . . . 5 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
4214, 38, 39mulassi 10986 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
4323oveq2i 7286 . . . . . . . . 9 (-𝑆 · (∗‘-𝑆)) = (-𝑆 · -(∗‘𝑆))
442cjcli 14880 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
452, 44mul2negi 11423 . . . . . . . . 9 (-𝑆 · -(∗‘𝑆)) = (𝑆 · (∗‘𝑆))
4643, 45eqtri 2766 . . . . . . . 8 (-𝑆 · (∗‘-𝑆)) = (𝑆 · (∗‘𝑆))
4746oveq1i 7285 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4842, 47eqtr3i 2768 . . . . . 6 (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4948oveq2i 7286 . . . . 5 ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5041, 49eqtri 2766 . . . 4 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5129, 36, 503eqtri 2770 . . 3 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5227, 51oveq12i 7287 . 2 ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
5313, 18, 523eqtri 2770 1 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  -cneg 11206  ccj 14807  chba 29281   + cva 29282   · csm 29283   ·ih csp 29284   cmv 29287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-hfvadd 29362  ax-hfvmul 29367  ax-hvmulass 29369  ax-hfi 29441  ax-his1 29444  ax-his2 29445  ax-his3 29446
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-cj 14810  df-re 14811  df-im 14812  df-hvsub 29333
This theorem is referenced by:  normlem1  29472
  Copyright terms: Public domain W3C validator