Proof of Theorem normlem0
Step | Hyp | Ref
| Expression |
1 | | normlem1.2 |
. . . . 5
⊢ 𝐹 ∈ ℋ |
2 | | normlem1.1 |
. . . . . 6
⊢ 𝑆 ∈ ℂ |
3 | | normlem1.3 |
. . . . . 6
⊢ 𝐺 ∈ ℋ |
4 | 2, 3 | hvmulcli 29277 |
. . . . 5
⊢ (𝑆
·ℎ 𝐺) ∈ ℋ |
5 | 1, 4 | hvsubvali 29283 |
. . . 4
⊢ (𝐹 −ℎ
(𝑆
·ℎ 𝐺)) = (𝐹 +ℎ (-1
·ℎ (𝑆 ·ℎ 𝐺))) |
6 | 2 | mulm1i 11350 |
. . . . . . 7
⊢ (-1
· 𝑆) = -𝑆 |
7 | 6 | oveq1i 7265 |
. . . . . 6
⊢ ((-1
· 𝑆)
·ℎ 𝐺) = (-𝑆 ·ℎ 𝐺) |
8 | | neg1cn 12017 |
. . . . . . 7
⊢ -1 ∈
ℂ |
9 | 8, 2, 3 | hvmulassi 29309 |
. . . . . 6
⊢ ((-1
· 𝑆)
·ℎ 𝐺) = (-1 ·ℎ
(𝑆
·ℎ 𝐺)) |
10 | 7, 9 | eqtr3i 2768 |
. . . . 5
⊢ (-𝑆
·ℎ 𝐺) = (-1 ·ℎ
(𝑆
·ℎ 𝐺)) |
11 | 10 | oveq2i 7266 |
. . . 4
⊢ (𝐹 +ℎ (-𝑆
·ℎ 𝐺)) = (𝐹 +ℎ (-1
·ℎ (𝑆 ·ℎ 𝐺))) |
12 | 5, 11 | eqtr4i 2769 |
. . 3
⊢ (𝐹 −ℎ
(𝑆
·ℎ 𝐺)) = (𝐹 +ℎ (-𝑆 ·ℎ 𝐺)) |
13 | 12, 12 | oveq12i 7267 |
. 2
⊢ ((𝐹 −ℎ
(𝑆
·ℎ 𝐺)) ·ih
(𝐹
−ℎ (𝑆 ·ℎ 𝐺))) = ((𝐹 +ℎ (-𝑆 ·ℎ 𝐺))
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺))) |
14 | 2 | negcli 11219 |
. . . 4
⊢ -𝑆 ∈ ℂ |
15 | 14, 3 | hvmulcli 29277 |
. . 3
⊢ (-𝑆
·ℎ 𝐺) ∈ ℋ |
16 | 1, 15 | hvaddcli 29281 |
. . 3
⊢ (𝐹 +ℎ (-𝑆
·ℎ 𝐺)) ∈ ℋ |
17 | | ax-his2 29346 |
. . 3
⊢ ((𝐹 ∈ ℋ ∧ (-𝑆
·ℎ 𝐺) ∈ ℋ ∧ (𝐹 +ℎ (-𝑆 ·ℎ 𝐺)) ∈ ℋ) →
((𝐹 +ℎ
(-𝑆
·ℎ 𝐺)) ·ih
(𝐹 +ℎ
(-𝑆
·ℎ 𝐺))) = ((𝐹 ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))) + ((-𝑆 ·ℎ 𝐺)
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺))))) |
18 | 1, 15, 16, 17 | mp3an 1459 |
. 2
⊢ ((𝐹 +ℎ (-𝑆
·ℎ 𝐺)) ·ih
(𝐹 +ℎ
(-𝑆
·ℎ 𝐺))) = ((𝐹 ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))) + ((-𝑆 ·ℎ 𝐺)
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺)))) |
19 | | his7 29353 |
. . . . 5
⊢ ((𝐹 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆
·ℎ 𝐺) ∈ ℋ) → (𝐹 ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆
·ℎ 𝐺)))) |
20 | 1, 1, 15, 19 | mp3an 1459 |
. . . 4
⊢ (𝐹
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆
·ℎ 𝐺))) |
21 | | his5 29349 |
. . . . . . 7
⊢ ((-𝑆 ∈ ℂ ∧ 𝐹 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐹
·ih (-𝑆 ·ℎ 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺))) |
22 | 14, 1, 3, 21 | mp3an 1459 |
. . . . . 6
⊢ (𝐹
·ih (-𝑆 ·ℎ 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺)) |
23 | 2 | cjnegi 14821 |
. . . . . . 7
⊢
(∗‘-𝑆)
= -(∗‘𝑆) |
24 | 23 | oveq1i 7265 |
. . . . . 6
⊢
((∗‘-𝑆)
· (𝐹
·ih 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺)) |
25 | 22, 24 | eqtri 2766 |
. . . . 5
⊢ (𝐹
·ih (-𝑆 ·ℎ 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺)) |
26 | 25 | oveq2i 7266 |
. . . 4
⊢ ((𝐹
·ih 𝐹) + (𝐹 ·ih (-𝑆
·ℎ 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) |
27 | 20, 26 | eqtri 2766 |
. . 3
⊢ (𝐹
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) |
28 | | ax-his3 29347 |
. . . . 5
⊢ ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ (𝐹 +ℎ (-𝑆
·ℎ 𝐺)) ∈ ℋ) → ((-𝑆
·ℎ 𝐺) ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))))) |
29 | 14, 3, 16, 28 | mp3an 1459 |
. . . 4
⊢ ((-𝑆
·ℎ 𝐺) ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺)))) |
30 | | his7 29353 |
. . . . . . 7
⊢ ((𝐺 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆
·ℎ 𝐺) ∈ ℋ) → (𝐺 ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆
·ℎ 𝐺)))) |
31 | 3, 1, 15, 30 | mp3an 1459 |
. . . . . 6
⊢ (𝐺
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆
·ℎ 𝐺))) |
32 | | his5 29349 |
. . . . . . . 8
⊢ ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐺
·ih (-𝑆 ·ℎ 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) |
33 | 14, 3, 3, 32 | mp3an 1459 |
. . . . . . 7
⊢ (𝐺
·ih (-𝑆 ·ℎ 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺)) |
34 | 33 | oveq2i 7266 |
. . . . . 6
⊢ ((𝐺
·ih 𝐹) + (𝐺 ·ih (-𝑆
·ℎ 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) |
35 | 31, 34 | eqtri 2766 |
. . . . 5
⊢ (𝐺
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) |
36 | 35 | oveq2i 7266 |
. . . 4
⊢ (-𝑆 · (𝐺 ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺)))) = (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) |
37 | 3, 1 | hicli 29344 |
. . . . . 6
⊢ (𝐺
·ih 𝐹) ∈ ℂ |
38 | 14 | cjcli 14808 |
. . . . . . 7
⊢
(∗‘-𝑆)
∈ ℂ |
39 | 3, 3 | hicli 29344 |
. . . . . . 7
⊢ (𝐺
·ih 𝐺) ∈ ℂ |
40 | 38, 39 | mulcli 10913 |
. . . . . 6
⊢
((∗‘-𝑆)
· (𝐺
·ih 𝐺)) ∈ ℂ |
41 | 14, 37, 40 | adddii 10918 |
. . . . 5
⊢ (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) |
42 | 14, 38, 39 | mulassi 10917 |
. . . . . . 7
⊢ ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) |
43 | 23 | oveq2i 7266 |
. . . . . . . . 9
⊢ (-𝑆 · (∗‘-𝑆)) = (-𝑆 · -(∗‘𝑆)) |
44 | 2 | cjcli 14808 |
. . . . . . . . . 10
⊢
(∗‘𝑆)
∈ ℂ |
45 | 2, 44 | mul2negi 11353 |
. . . . . . . . 9
⊢ (-𝑆 · -(∗‘𝑆)) = (𝑆 · (∗‘𝑆)) |
46 | 43, 45 | eqtri 2766 |
. . . . . . . 8
⊢ (-𝑆 · (∗‘-𝑆)) = (𝑆 · (∗‘𝑆)) |
47 | 46 | oveq1i 7265 |
. . . . . . 7
⊢ ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)) |
48 | 42, 47 | eqtr3i 2768 |
. . . . . 6
⊢ (-𝑆 ·
((∗‘-𝑆)
· (𝐺
·ih 𝐺))) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)) |
49 | 48 | oveq2i 7266 |
. . . . 5
⊢ ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))) |
50 | 41, 49 | eqtri 2766 |
. . . 4
⊢ (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))) |
51 | 29, 36, 50 | 3eqtri 2770 |
. . 3
⊢ ((-𝑆
·ℎ 𝐺) ·ih (𝐹 +ℎ (-𝑆
·ℎ 𝐺))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))) |
52 | 27, 51 | oveq12i 7267 |
. 2
⊢ ((𝐹
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺))) + ((-𝑆 ·ℎ 𝐺)
·ih (𝐹 +ℎ (-𝑆 ·ℎ 𝐺)))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))) |
53 | 13, 18, 52 | 3eqtri 2770 |
1
⊢ ((𝐹 −ℎ
(𝑆
·ℎ 𝐺)) ·ih
(𝐹
−ℎ (𝑆 ·ℎ 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))) |