HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Structured version   Visualization version   GIF version

Theorem normlem0 28888
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
Assertion
Ref Expression
normlem0 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5 𝐹 ∈ ℋ
2 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
42, 3hvmulcli 28793 . . . . 5 (𝑆 · 𝐺) ∈ ℋ
51, 4hvsubvali 28799 . . . 4 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
62mulm1i 11077 . . . . . . 7 (-1 · 𝑆) = -𝑆
76oveq1i 7155 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-𝑆 · 𝐺)
8 neg1cn 11744 . . . . . . 7 -1 ∈ ℂ
98, 2, 3hvmulassi 28825 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-1 · (𝑆 · 𝐺))
107, 9eqtr3i 2849 . . . . 5 (-𝑆 · 𝐺) = (-1 · (𝑆 · 𝐺))
1110oveq2i 7156 . . . 4 (𝐹 + (-𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
125, 11eqtr4i 2850 . . 3 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-𝑆 · 𝐺))
1312, 12oveq12i 7157 . 2 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺)))
142negcli 10946 . . . 4 -𝑆 ∈ ℂ
1514, 3hvmulcli 28793 . . 3 (-𝑆 · 𝐺) ∈ ℋ
161, 15hvaddcli 28797 . . 3 (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ
17 ax-his2 28862 . . 3 ((𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))))
181, 15, 16, 17mp3an 1458 . 2 ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))))
19 his7 28869 . . . . 5 ((𝐹 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))))
201, 1, 15, 19mp3an 1458 . . . 4 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺)))
21 his5 28865 . . . . . . 7 ((-𝑆 ∈ ℂ ∧ 𝐹 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺)))
2214, 1, 3, 21mp3an 1458 . . . . . 6 (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺))
232cjnegi 14537 . . . . . . 7 (∗‘-𝑆) = -(∗‘𝑆)
2423oveq1i 7155 . . . . . 6 ((∗‘-𝑆) · (𝐹 ·ih 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2522, 24eqtri 2847 . . . . 5 (𝐹 ·ih (-𝑆 · 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2625oveq2i 7156 . . . 4 ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
2720, 26eqtri 2847 . . 3 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
28 ax-his3 28863 . . . . 5 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))))
2914, 3, 16, 28mp3an 1458 . . . 4 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))))
30 his7 28869 . . . . . . 7 ((𝐺 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))))
313, 1, 15, 30mp3an 1458 . . . . . 6 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺)))
32 his5 28865 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3314, 3, 3, 32mp3an 1458 . . . . . . 7 (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺))
3433oveq2i 7156 . . . . . 6 ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3531, 34eqtri 2847 . . . . 5 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3635oveq2i 7156 . . . 4 (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))) = (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
373, 1hicli 28860 . . . . . 6 (𝐺 ·ih 𝐹) ∈ ℂ
3814cjcli 14524 . . . . . . 7 (∗‘-𝑆) ∈ ℂ
393, 3hicli 28860 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
4038, 39mulcli 10640 . . . . . 6 ((∗‘-𝑆) · (𝐺 ·ih 𝐺)) ∈ ℂ
4114, 37, 40adddii 10645 . . . . 5 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
4214, 38, 39mulassi 10644 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
4323oveq2i 7156 . . . . . . . . 9 (-𝑆 · (∗‘-𝑆)) = (-𝑆 · -(∗‘𝑆))
442cjcli 14524 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
452, 44mul2negi 11080 . . . . . . . . 9 (-𝑆 · -(∗‘𝑆)) = (𝑆 · (∗‘𝑆))
4643, 45eqtri 2847 . . . . . . . 8 (-𝑆 · (∗‘-𝑆)) = (𝑆 · (∗‘𝑆))
4746oveq1i 7155 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4842, 47eqtr3i 2849 . . . . . 6 (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4948oveq2i 7156 . . . . 5 ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5041, 49eqtri 2847 . . . 4 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5129, 36, 503eqtri 2851 . . 3 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5227, 51oveq12i 7157 . 2 ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
5313, 18, 523eqtri 2851 1 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7145  cc 10527  1c1 10530   + caddc 10532   · cmul 10534  -cneg 10863  ccj 14451  chba 28698   + cva 28699   · csm 28700   ·ih csp 28701   cmv 28704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-hfvadd 28779  ax-hfvmul 28784  ax-hvmulass 28786  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-2 11693  df-cj 14454  df-re 14455  df-im 14456  df-hvsub 28750
This theorem is referenced by:  normlem1  28889
  Copyright terms: Public domain W3C validator