HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem0 Structured version   Visualization version   GIF version

Theorem normlem0 30114
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 7-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
Assertion
Ref Expression
normlem0 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem0
StepHypRef Expression
1 normlem1.2 . . . . 5 𝐹 ∈ ℋ
2 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
42, 3hvmulcli 30019 . . . . 5 (𝑆 · 𝐺) ∈ ℋ
51, 4hvsubvali 30025 . . . 4 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
62mulm1i 11609 . . . . . . 7 (-1 · 𝑆) = -𝑆
76oveq1i 7372 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-𝑆 · 𝐺)
8 neg1cn 12276 . . . . . . 7 -1 ∈ ℂ
98, 2, 3hvmulassi 30051 . . . . . 6 ((-1 · 𝑆) · 𝐺) = (-1 · (𝑆 · 𝐺))
107, 9eqtr3i 2761 . . . . 5 (-𝑆 · 𝐺) = (-1 · (𝑆 · 𝐺))
1110oveq2i 7373 . . . 4 (𝐹 + (-𝑆 · 𝐺)) = (𝐹 + (-1 · (𝑆 · 𝐺)))
125, 11eqtr4i 2762 . . 3 (𝐹 (𝑆 · 𝐺)) = (𝐹 + (-𝑆 · 𝐺))
1312, 12oveq12i 7374 . 2 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺)))
142negcli 11478 . . . 4 -𝑆 ∈ ℂ
1514, 3hvmulcli 30019 . . 3 (-𝑆 · 𝐺) ∈ ℋ
161, 15hvaddcli 30023 . . 3 (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ
17 ax-his2 30088 . . 3 ((𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))))
181, 15, 16, 17mp3an 1461 . 2 ((𝐹 + (-𝑆 · 𝐺)) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))))
19 his7 30095 . . . . 5 ((𝐹 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))))
201, 1, 15, 19mp3an 1461 . . . 4 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺)))
21 his5 30091 . . . . . . 7 ((-𝑆 ∈ ℂ ∧ 𝐹 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺)))
2214, 1, 3, 21mp3an 1461 . . . . . 6 (𝐹 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐹 ·ih 𝐺))
232cjnegi 15079 . . . . . . 7 (∗‘-𝑆) = -(∗‘𝑆)
2423oveq1i 7372 . . . . . 6 ((∗‘-𝑆) · (𝐹 ·ih 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2522, 24eqtri 2759 . . . . 5 (𝐹 ·ih (-𝑆 · 𝐺)) = (-(∗‘𝑆) · (𝐹 ·ih 𝐺))
2625oveq2i 7373 . . . 4 ((𝐹 ·ih 𝐹) + (𝐹 ·ih (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
2720, 26eqtri 2759 . . 3 (𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺)))
28 ax-his3 30089 . . . . 5 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ (𝐹 + (-𝑆 · 𝐺)) ∈ ℋ) → ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))))
2914, 3, 16, 28mp3an 1461 . . . 4 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))))
30 his7 30095 . . . . . . 7 ((𝐺 ∈ ℋ ∧ 𝐹 ∈ ℋ ∧ (-𝑆 · 𝐺) ∈ ℋ) → (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))))
313, 1, 15, 30mp3an 1461 . . . . . 6 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺)))
32 his5 30091 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ 𝐺 ∈ ℋ ∧ 𝐺 ∈ ℋ) → (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3314, 3, 3, 32mp3an 1461 . . . . . . 7 (𝐺 ·ih (-𝑆 · 𝐺)) = ((∗‘-𝑆) · (𝐺 ·ih 𝐺))
3433oveq2i 7373 . . . . . 6 ((𝐺 ·ih 𝐹) + (𝐺 ·ih (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3531, 34eqtri 2759 . . . . 5 (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺))) = ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
3635oveq2i 7373 . . . 4 (-𝑆 · (𝐺 ·ih (𝐹 + (-𝑆 · 𝐺)))) = (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
373, 1hicli 30086 . . . . . 6 (𝐺 ·ih 𝐹) ∈ ℂ
3814cjcli 15066 . . . . . . 7 (∗‘-𝑆) ∈ ℂ
393, 3hicli 30086 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
4038, 39mulcli 11171 . . . . . 6 ((∗‘-𝑆) · (𝐺 ·ih 𝐺)) ∈ ℂ
4114, 37, 40adddii 11176 . . . . 5 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))))
4214, 38, 39mulassi 11175 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))
4323oveq2i 7373 . . . . . . . . 9 (-𝑆 · (∗‘-𝑆)) = (-𝑆 · -(∗‘𝑆))
442cjcli 15066 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
452, 44mul2negi 11612 . . . . . . . . 9 (-𝑆 · -(∗‘𝑆)) = (𝑆 · (∗‘𝑆))
4643, 45eqtri 2759 . . . . . . . 8 (-𝑆 · (∗‘-𝑆)) = (𝑆 · (∗‘𝑆))
4746oveq1i 7372 . . . . . . 7 ((-𝑆 · (∗‘-𝑆)) · (𝐺 ·ih 𝐺)) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4842, 47eqtr3i 2761 . . . . . 6 (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺))) = ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))
4948oveq2i 7373 . . . . 5 ((-𝑆 · (𝐺 ·ih 𝐹)) + (-𝑆 · ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5041, 49eqtri 2759 . . . 4 (-𝑆 · ((𝐺 ·ih 𝐹) + ((∗‘-𝑆) · (𝐺 ·ih 𝐺)))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5129, 36, 503eqtri 2763 . . 3 ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺))) = ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺)))
5227, 51oveq12i 7374 . 2 ((𝐹 ·ih (𝐹 + (-𝑆 · 𝐺))) + ((-𝑆 · 𝐺) ·ih (𝐹 + (-𝑆 · 𝐺)))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
5313, 18, 523eqtri 2763 1 ((𝐹 (𝑆 · 𝐺)) ·ih (𝐹 (𝑆 · 𝐺))) = (((𝐹 ·ih 𝐹) + (-(∗‘𝑆) · (𝐹 ·ih 𝐺))) + ((-𝑆 · (𝐺 ·ih 𝐹)) + ((𝑆 · (∗‘𝑆)) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  cfv 6501  (class class class)co 7362  cc 11058  1c1 11061   + caddc 11063   · cmul 11065  -cneg 11395  ccj 14993  chba 29924   + cva 29925   · csm 29926   ·ih csp 29927   cmv 29930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-hfvadd 30005  ax-hfvmul 30010  ax-hvmulass 30012  ax-hfi 30084  ax-his1 30087  ax-his2 30088  ax-his3 30089
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-2 12225  df-cj 14996  df-re 14997  df-im 14998  df-hvsub 29976
This theorem is referenced by:  normlem1  30115
  Copyright terms: Public domain W3C validator