HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmul2negi Structured version   Visualization version   GIF version

Theorem hvmul2negi 30978
Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmulcom.1 𝐴 ∈ ℂ
hvmulcom.2 𝐵 ∈ ℂ
hvmulcom.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvmul2negi (-𝐴 · (-𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶))

Proof of Theorem hvmul2negi
StepHypRef Expression
1 hvmulcom.1 . . . 4 𝐴 ∈ ℂ
2 hvmulcom.2 . . . 4 𝐵 ∈ ℂ
31, 2mul2negi 11703 . . 3 (-𝐴 · -𝐵) = (𝐴 · 𝐵)
43oveq1i 7426 . 2 ((-𝐴 · -𝐵) · 𝐶) = ((𝐴 · 𝐵) · 𝐶)
51negcli 11569 . . 3 -𝐴 ∈ ℂ
62negcli 11569 . . 3 -𝐵 ∈ ℂ
7 hvmulcom.3 . . 3 𝐶 ∈ ℋ
85, 6, 7hvmulassi 30976 . 2 ((-𝐴 · -𝐵) · 𝐶) = (-𝐴 · (-𝐵 · 𝐶))
91, 2, 7hvmulassi 30976 . 2 ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
104, 8, 93eqtr3i 2762 1 (-𝐴 · (-𝐵 · 𝐶)) = (𝐴 · (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  (class class class)co 7416  cc 11147   · cmul 11154  -cneg 11486  chba 30849   · csm 30851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-hvmulass 30937
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-ltxr 11294  df-sub 11487  df-neg 11488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator