Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmul2negi | Structured version Visualization version GIF version |
Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcom.1 | ⊢ 𝐴 ∈ ℂ |
hvmulcom.2 | ⊢ 𝐵 ∈ ℂ |
hvmulcom.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvmul2negi | ⊢ (-𝐴 ·ℎ (-𝐵 ·ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcom.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
2 | hvmulcom.2 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | mul2negi 11529 | . . 3 ⊢ (-𝐴 · -𝐵) = (𝐴 · 𝐵) |
4 | 3 | oveq1i 7352 | . 2 ⊢ ((-𝐴 · -𝐵) ·ℎ 𝐶) = ((𝐴 · 𝐵) ·ℎ 𝐶) |
5 | 1 | negcli 11395 | . . 3 ⊢ -𝐴 ∈ ℂ |
6 | 2 | negcli 11395 | . . 3 ⊢ -𝐵 ∈ ℂ |
7 | hvmulcom.3 | . . 3 ⊢ 𝐶 ∈ ℋ | |
8 | 5, 6, 7 | hvmulassi 29696 | . 2 ⊢ ((-𝐴 · -𝐵) ·ℎ 𝐶) = (-𝐴 ·ℎ (-𝐵 ·ℎ 𝐶)) |
9 | 1, 2, 7 | hvmulassi 29696 | . 2 ⊢ ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
10 | 4, 8, 9 | 3eqtr3i 2773 | 1 ⊢ (-𝐴 ·ℎ (-𝐵 ·ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 (class class class)co 7342 ℂcc 10975 · cmul 10982 -cneg 11312 ℋchba 29569 ·ℎ csm 29571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-hvmulass 29657 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-ltxr 11120 df-sub 11313 df-neg 11314 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |