HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 31008
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11015 . . . 4 class
31, 2wcel 2113 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2113 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30920 . . . 4 class
86, 7wcel 2113 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11022 . . . . 5 class ·
111, 4, 10co 7355 . . . 4 class (𝐴 · 𝐵)
12 csm 30922 . . . 4 class ·
1311, 6, 12co 7355 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7355 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7355 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1541 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  31025  hvmul0or  31026  hvm1neg  31033  hvmulcom  31044  hvmulassi  31047  hvsubdistr2  31051  hilvc  31163  hhssnv  31265  h1de2bi  31555  spansncol  31569  h1datomi  31582  mayete3i  31729  homulass  31803  kbmul  31956  kbass5  32121  strlem1  32251
  Copyright terms: Public domain W3C validator