Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version |
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 10800 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | chba 29182 | . . . 4 class ℋ | |
8 | 6, 7 | wcel 2108 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 5, 8 | w3a 1085 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
10 | cmul 10807 | . . . . 5 class · | |
11 | 1, 4, 10 | co 7255 | . . . 4 class (𝐴 · 𝐵) |
12 | csm 29184 | . . . 4 class ·ℎ | |
13 | 11, 6, 12 | co 7255 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
14 | 4, 6, 12 | co 7255 | . . . 4 class (𝐵 ·ℎ 𝐶) |
15 | 1, 14, 12 | co 7255 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
16 | 13, 15 | wceq 1539 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmul0 29287 hvmul0or 29288 hvm1neg 29295 hvmulcom 29306 hvmulassi 29309 hvsubdistr2 29313 hilvc 29425 hhssnv 29527 h1de2bi 29817 spansncol 29831 h1datomi 29844 mayete3i 29991 homulass 30065 kbmul 30218 kbass5 30383 strlem1 30513 |
Copyright terms: Public domain | W3C validator |