| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 10999 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2111 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2111 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | chba 30891 | . . . 4 class ℋ | |
| 8 | 6, 7 | wcel 2111 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 5, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
| 10 | cmul 11006 | . . . . 5 class · | |
| 11 | 1, 4, 10 | co 7341 | . . . 4 class (𝐴 · 𝐵) |
| 12 | csm 30893 | . . . 4 class ·ℎ | |
| 13 | 11, 6, 12 | co 7341 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
| 14 | 4, 6, 12 | co 7341 | . . . 4 class (𝐵 ·ℎ 𝐶) |
| 15 | 1, 14, 12 | co 7341 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 16 | 13, 15 | wceq 1541 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmul0 30996 hvmul0or 30997 hvm1neg 31004 hvmulcom 31015 hvmulassi 31018 hvsubdistr2 31022 hilvc 31134 hhssnv 31236 h1de2bi 31526 spansncol 31540 h1datomi 31553 mayete3i 31700 homulass 31774 kbmul 31927 kbass5 32092 strlem1 32222 |
| Copyright terms: Public domain | W3C validator |