HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 29378
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 10878 . . . 4 class
31, 2wcel 2107 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2107 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 29290 . . . 4 class
86, 7wcel 2107 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 10885 . . . . 5 class ·
111, 4, 10co 7284 . . . 4 class (𝐴 · 𝐵)
12 csm 29292 . . . 4 class ·
1311, 6, 12co 7284 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7284 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7284 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1539 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  29395  hvmul0or  29396  hvm1neg  29403  hvmulcom  29414  hvmulassi  29417  hvsubdistr2  29421  hilvc  29533  hhssnv  29635  h1de2bi  29925  spansncol  29939  h1datomi  29952  mayete3i  30099  homulass  30173  kbmul  30326  kbass5  30491  strlem1  30621
  Copyright terms: Public domain W3C validator