| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11066 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | chba 30848 | . . . 4 class ℋ | |
| 8 | 6, 7 | wcel 2109 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 5, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
| 10 | cmul 11073 | . . . . 5 class · | |
| 11 | 1, 4, 10 | co 7387 | . . . 4 class (𝐴 · 𝐵) |
| 12 | csm 30850 | . . . 4 class ·ℎ | |
| 13 | 11, 6, 12 | co 7387 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
| 14 | 4, 6, 12 | co 7387 | . . . 4 class (𝐵 ·ℎ 𝐶) |
| 15 | 1, 14, 12 | co 7387 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 16 | 13, 15 | wceq 1540 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmul0 30953 hvmul0or 30954 hvm1neg 30961 hvmulcom 30972 hvmulassi 30975 hvsubdistr2 30979 hilvc 31091 hhssnv 31193 h1de2bi 31483 spansncol 31497 h1datomi 31510 mayete3i 31657 homulass 31731 kbmul 31884 kbass5 32049 strlem1 32179 |
| Copyright terms: Public domain | W3C validator |