HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 30934
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11125 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2108 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30846 . . . 4 class
86, 7wcel 2108 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11132 . . . . 5 class ·
111, 4, 10co 7403 . . . 4 class (𝐴 · 𝐵)
12 csm 30848 . . . 4 class ·
1311, 6, 12co 7403 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7403 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7403 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1540 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  30951  hvmul0or  30952  hvm1neg  30959  hvmulcom  30970  hvmulassi  30973  hvsubdistr2  30977  hilvc  31089  hhssnv  31191  h1de2bi  31481  spansncol  31495  h1datomi  31508  mayete3i  31655  homulass  31729  kbmul  31882  kbass5  32047  strlem1  32177
  Copyright terms: Public domain W3C validator