| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11042 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | chba 30821 | . . . 4 class ℋ | |
| 8 | 6, 7 | wcel 2109 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 5, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
| 10 | cmul 11049 | . . . . 5 class · | |
| 11 | 1, 4, 10 | co 7369 | . . . 4 class (𝐴 · 𝐵) |
| 12 | csm 30823 | . . . 4 class ·ℎ | |
| 13 | 11, 6, 12 | co 7369 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
| 14 | 4, 6, 12 | co 7369 | . . . 4 class (𝐵 ·ℎ 𝐶) |
| 15 | 1, 14, 12 | co 7369 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 16 | 13, 15 | wceq 1540 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmul0 30926 hvmul0or 30927 hvm1neg 30934 hvmulcom 30945 hvmulassi 30948 hvsubdistr2 30952 hilvc 31064 hhssnv 31166 h1de2bi 31456 spansncol 31470 h1datomi 31483 mayete3i 31630 homulass 31704 kbmul 31857 kbass5 32022 strlem1 32152 |
| Copyright terms: Public domain | W3C validator |