HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 31035
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11150 . . . 4 class
31, 2wcel 2105 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2105 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30947 . . . 4 class
86, 7wcel 2105 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11157 . . . . 5 class ·
111, 4, 10co 7430 . . . 4 class (𝐴 · 𝐵)
12 csm 30949 . . . 4 class ·
1311, 6, 12co 7430 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7430 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7430 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1536 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  31052  hvmul0or  31053  hvm1neg  31060  hvmulcom  31071  hvmulassi  31074  hvsubdistr2  31078  hilvc  31190  hhssnv  31292  h1de2bi  31582  spansncol  31596  h1datomi  31609  mayete3i  31756  homulass  31830  kbmul  31983  kbass5  32148  strlem1  32278
  Copyright terms: Public domain W3C validator