| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 11073 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2109 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2109 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | chba 30855 | . . . 4 class ℋ | |
| 8 | 6, 7 | wcel 2109 | . . 3 wff 𝐶 ∈ ℋ |
| 9 | 3, 5, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
| 10 | cmul 11080 | . . . . 5 class · | |
| 11 | 1, 4, 10 | co 7390 | . . . 4 class (𝐴 · 𝐵) |
| 12 | csm 30857 | . . . 4 class ·ℎ | |
| 13 | 11, 6, 12 | co 7390 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
| 14 | 4, 6, 12 | co 7390 | . . . 4 class (𝐵 ·ℎ 𝐶) |
| 15 | 1, 14, 12 | co 7390 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 16 | 13, 15 | wceq 1540 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
| 17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmul0 30960 hvmul0or 30961 hvm1neg 30968 hvmulcom 30979 hvmulassi 30982 hvsubdistr2 30986 hilvc 31098 hhssnv 31200 h1de2bi 31490 spansncol 31504 h1datomi 31517 mayete3i 31664 homulass 31738 kbmul 31891 kbass5 32056 strlem1 32186 |
| Copyright terms: Public domain | W3C validator |