HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 30943
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11073 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2109 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30855 . . . 4 class
86, 7wcel 2109 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11080 . . . . 5 class ·
111, 4, 10co 7390 . . . 4 class (𝐴 · 𝐵)
12 csm 30857 . . . 4 class ·
1311, 6, 12co 7390 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7390 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7390 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1540 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  30960  hvmul0or  30961  hvm1neg  30968  hvmulcom  30979  hvmulassi  30982  hvsubdistr2  30986  hilvc  31098  hhssnv  31200  h1de2bi  31490  spansncol  31504  h1datomi  31517  mayete3i  31664  homulass  31738  kbmul  31891  kbass5  32056  strlem1  32186
  Copyright terms: Public domain W3C validator