HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 30979
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 10999 . . . 4 class
31, 2wcel 2111 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2111 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30891 . . . 4 class
86, 7wcel 2111 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11006 . . . . 5 class ·
111, 4, 10co 7341 . . . 4 class (𝐴 · 𝐵)
12 csm 30893 . . . 4 class ·
1311, 6, 12co 7341 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7341 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7341 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1541 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  30996  hvmul0or  30997  hvm1neg  31004  hvmulcom  31015  hvmulassi  31018  hvsubdistr2  31022  hilvc  31134  hhssnv  31236  h1de2bi  31526  spansncol  31540  h1datomi  31553  mayete3i  31700  homulass  31774  kbmul  31927  kbass5  32092  strlem1  32222
  Copyright terms: Public domain W3C validator