HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 29270
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 10800 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2108 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 29182 . . . 4 class
86, 7wcel 2108 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1085 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 10807 . . . . 5 class ·
111, 4, 10co 7255 . . . 4 class (𝐴 · 𝐵)
12 csm 29184 . . . 4 class ·
1311, 6, 12co 7255 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7255 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7255 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1539 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  29287  hvmul0or  29288  hvm1neg  29295  hvmulcom  29306  hvmulassi  29309  hvsubdistr2  29313  hilvc  29425  hhssnv  29527  h1de2bi  29817  spansncol  29831  h1datomi  29844  mayete3i  29991  homulass  30065  kbmul  30218  kbass5  30383  strlem1  30513
  Copyright terms: Public domain W3C validator