HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 30936
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11066 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2109 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30848 . . . 4 class
86, 7wcel 2109 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11073 . . . . 5 class ·
111, 4, 10co 7387 . . . 4 class (𝐴 · 𝐵)
12 csm 30850 . . . 4 class ·
1311, 6, 12co 7387 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7387 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7387 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1540 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  30953  hvmul0or  30954  hvm1neg  30961  hvmulcom  30972  hvmulassi  30975  hvsubdistr2  30979  hilvc  31091  hhssnv  31193  h1de2bi  31483  spansncol  31497  h1datomi  31510  mayete3i  31657  homulass  31731  kbmul  31884  kbass5  32049  strlem1  32179
  Copyright terms: Public domain W3C validator