![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version |
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11150 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2105 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2105 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | chba 30947 | . . . 4 class ℋ | |
8 | 6, 7 | wcel 2105 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 5, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
10 | cmul 11157 | . . . . 5 class · | |
11 | 1, 4, 10 | co 7430 | . . . 4 class (𝐴 · 𝐵) |
12 | csm 30949 | . . . 4 class ·ℎ | |
13 | 11, 6, 12 | co 7430 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
14 | 4, 6, 12 | co 7430 | . . . 4 class (𝐵 ·ℎ 𝐶) |
15 | 1, 14, 12 | co 7430 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
16 | 13, 15 | wceq 1536 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmul0 31052 hvmul0or 31053 hvm1neg 31060 hvmulcom 31071 hvmulassi 31074 hvsubdistr2 31078 hilvc 31190 hhssnv 31292 h1de2bi 31582 spansncol 31596 h1datomi 31609 mayete3i 31756 homulass 31830 kbmul 31983 kbass5 32148 strlem1 32278 |
Copyright terms: Public domain | W3C validator |