HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 30970
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11026 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2109 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30882 . . . 4 class
86, 7wcel 2109 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11033 . . . . 5 class ·
111, 4, 10co 7353 . . . 4 class (𝐴 · 𝐵)
12 csm 30884 . . . 4 class ·
1311, 6, 12co 7353 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7353 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7353 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1540 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  30987  hvmul0or  30988  hvm1neg  30995  hvmulcom  31006  hvmulassi  31009  hvsubdistr2  31013  hilvc  31125  hhssnv  31227  h1de2bi  31517  spansncol  31531  h1datomi  31544  mayete3i  31691  homulass  31765  kbmul  31918  kbass5  32083  strlem1  32213
  Copyright terms: Public domain W3C validator