HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 31039
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11182 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2108 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30951 . . . 4 class
86, 7wcel 2108 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1087 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11189 . . . . 5 class ·
111, 4, 10co 7448 . . . 4 class (𝐴 · 𝐵)
12 csm 30953 . . . 4 class ·
1311, 6, 12co 7448 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7448 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7448 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1537 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  31056  hvmul0or  31057  hvm1neg  31064  hvmulcom  31075  hvmulassi  31078  hvsubdistr2  31082  hilvc  31194  hhssnv  31296  h1de2bi  31586  spansncol  31600  h1datomi  31613  mayete3i  31760  homulass  31834  kbmul  31987  kbass5  32152  strlem1  32282
  Copyright terms: Public domain W3C validator