Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version |
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 10878 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2107 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2107 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | chba 29290 | . . . 4 class ℋ | |
8 | 6, 7 | wcel 2107 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 5, 8 | w3a 1086 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
10 | cmul 10885 | . . . . 5 class · | |
11 | 1, 4, 10 | co 7284 | . . . 4 class (𝐴 · 𝐵) |
12 | csm 29292 | . . . 4 class ·ℎ | |
13 | 11, 6, 12 | co 7284 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
14 | 4, 6, 12 | co 7284 | . . . 4 class (𝐵 ·ℎ 𝐶) |
15 | 1, 14, 12 | co 7284 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
16 | 13, 15 | wceq 1539 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmul0 29395 hvmul0or 29396 hvm1neg 29403 hvmulcom 29414 hvmulassi 29417 hvsubdistr2 29421 hilvc 29533 hhssnv 29635 h1de2bi 29925 spansncol 29939 h1datomi 29952 mayete3i 30099 homulass 30173 kbmul 30326 kbass5 30491 strlem1 30621 |
Copyright terms: Public domain | W3C validator |