![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hvmulass | Structured version Visualization version GIF version |
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hvmulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 11182 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2108 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2108 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | chba 30951 | . . . 4 class ℋ | |
8 | 6, 7 | wcel 2108 | . . 3 wff 𝐶 ∈ ℋ |
9 | 3, 5, 8 | w3a 1087 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) |
10 | cmul 11189 | . . . . 5 class · | |
11 | 1, 4, 10 | co 7448 | . . . 4 class (𝐴 · 𝐵) |
12 | csm 30953 | . . . 4 class ·ℎ | |
13 | 11, 6, 12 | co 7448 | . . 3 class ((𝐴 · 𝐵) ·ℎ 𝐶) |
14 | 4, 6, 12 | co 7448 | . . . 4 class (𝐵 ·ℎ 𝐶) |
15 | 1, 14, 12 | co 7448 | . . 3 class (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
16 | 13, 15 | wceq 1537 | . 2 wff ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) |
17 | 9, 16 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmul0 31056 hvmul0or 31057 hvm1neg 31064 hvmulcom 31075 hvmulassi 31078 hvsubdistr2 31082 hilvc 31194 hhssnv 31296 h1de2bi 31586 spansncol 31600 h1datomi 31613 mayete3i 31760 homulass 31834 kbmul 31987 kbass5 32152 strlem1 32282 |
Copyright terms: Public domain | W3C validator |