HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvmulass Structured version   Visualization version   GIF version

Axiom ax-hvmulass 30909
Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvmulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 11042 . . . 4 class
31, 2wcel 2109 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2109 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
7 chba 30821 . . . 4 class
86, 7wcel 2109 . . 3 wff 𝐶 ∈ ℋ
93, 5, 8w3a 1086 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ)
10 cmul 11049 . . . . 5 class ·
111, 4, 10co 7369 . . . 4 class (𝐴 · 𝐵)
12 csm 30823 . . . 4 class ·
1311, 6, 12co 7369 . . 3 class ((𝐴 · 𝐵) · 𝐶)
144, 6, 12co 7369 . . . 4 class (𝐵 · 𝐶)
151, 14, 12co 7369 . . 3 class (𝐴 · (𝐵 · 𝐶))
1613, 15wceq 1540 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
179, 16wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  hvmul0  30926  hvmul0or  30927  hvm1neg  30934  hvmulcom  30945  hvmulassi  30948  hvsubdistr2  30952  hilvc  31064  hhssnv  31166  h1de2bi  31456  spansncol  31470  h1datomi  31483  mayete3i  31630  homulass  31704  kbmul  31857  kbass5  32022  strlem1  32152
  Copyright terms: Public domain W3C validator