HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcomi Structured version   Visualization version   GIF version

Theorem hvmulcomi 29310
Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmulcom.1 𝐴 ∈ ℂ
hvmulcom.2 𝐵 ∈ ℂ
hvmulcom.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvmulcomi (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))

Proof of Theorem hvmulcomi
StepHypRef Expression
1 hvmulcom.1 . 2 𝐴 ∈ ℂ
2 hvmulcom.2 . 2 𝐵 ∈ ℂ
3 hvmulcom.3 . 2 𝐶 ∈ ℋ
4 hvmulcom 29306 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
51, 2, 3, 4mp3an 1459 1 (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7255  cc 10800  chba 29182   · csm 29184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-mulcom 10866  ax-hvmulass 29270
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator