| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvmulcomi | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvmulcom.1 | ⊢ 𝐴 ∈ ℂ |
| hvmulcom.2 | ⊢ 𝐵 ∈ ℂ |
| hvmulcom.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvmulcomi | ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcom.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | hvmulcom.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | hvmulcom.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
| 4 | hvmulcom 31015 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 ℋchba 30891 ·ℎ csm 30893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-mulcom 11065 ax-hvmulass 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |