Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcomi | Structured version Visualization version GIF version |
Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcom.1 | ⊢ 𝐴 ∈ ℂ |
hvmulcom.2 | ⊢ 𝐵 ∈ ℂ |
hvmulcom.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvmulcomi | ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcom.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | hvmulcom.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | hvmulcom.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
4 | hvmulcom 29405 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 ℋchba 29281 ·ℎ csm 29283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-mulcom 10935 ax-hvmulass 29369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |