![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcomi | Structured version Visualization version GIF version |
Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcom.1 | โข ๐ด โ โ |
hvmulcom.2 | โข ๐ต โ โ |
hvmulcom.3 | โข ๐ถ โ โ |
Ref | Expression |
---|---|
hvmulcomi | โข (๐ด ยทโ (๐ต ยทโ ๐ถ)) = (๐ต ยทโ (๐ด ยทโ ๐ถ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcom.1 | . 2 โข ๐ด โ โ | |
2 | hvmulcom.2 | . 2 โข ๐ต โ โ | |
3 | hvmulcom.3 | . 2 โข ๐ถ โ โ | |
4 | hvmulcom 30560 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยทโ (๐ต ยทโ ๐ถ)) = (๐ต ยทโ (๐ด ยทโ ๐ถ))) | |
5 | 1, 2, 3, 4 | mp3an 1460 | 1 โข (๐ด ยทโ (๐ต ยทโ ๐ถ)) = (๐ต ยทโ (๐ด ยทโ ๐ถ)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 โ wcel 2105 (class class class)co 7412 โcc 11111 โchba 30436 ยทโ csm 30438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-mulcom 11177 ax-hvmulass 30524 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |