Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvmulcomi | Structured version Visualization version GIF version |
Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcom.1 | ⊢ 𝐴 ∈ ℂ |
hvmulcom.2 | ⊢ 𝐵 ∈ ℂ |
hvmulcom.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
hvmulcomi | ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcom.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | hvmulcom.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | hvmulcom.3 | . 2 ⊢ 𝐶 ∈ ℋ | |
4 | hvmulcom 29124 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 ·ℎ (𝐵 ·ℎ 𝐶)) = (𝐵 ·ℎ (𝐴 ·ℎ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 (class class class)co 7213 ℂcc 10727 ℋchba 29000 ·ℎ csm 29002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-mulcom 10793 ax-hvmulass 29088 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |