HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvmulcomi Structured version   Visualization version   GIF version

Theorem hvmulcomi 29518
Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvmulcom.1 𝐴 ∈ ℂ
hvmulcom.2 𝐵 ∈ ℂ
hvmulcom.3 𝐶 ∈ ℋ
Assertion
Ref Expression
hvmulcomi (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))

Proof of Theorem hvmulcomi
StepHypRef Expression
1 hvmulcom.1 . 2 𝐴 ∈ ℂ
2 hvmulcom.2 . 2 𝐵 ∈ ℂ
3 hvmulcom.3 . 2 𝐶 ∈ ℋ
4 hvmulcom 29514 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
51, 2, 3, 4mp3an 1460 1 (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  (class class class)co 7315  cc 10942  chba 29390   · csm 29392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-mulcom 11008  ax-hvmulass 29478
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-iota 6417  df-fv 6473  df-ov 7318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator