Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichv | Structured version Visualization version GIF version |
Description: Setvar variables are interchangeable in a wff they do not appear in. (Contributed by SN, 23-Nov-2023.) |
Ref | Expression |
---|---|
ichv | ⊢ [𝑥⇄𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbv 2092 | . . . . . . 7 ⊢ ([𝑎 / 𝑦]𝜑 ↔ 𝜑) | |
2 | 1 | sbbii 2080 | . . . . . 6 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
3 | sbv 2092 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | |
4 | 2, 3 | bitri 274 | . . . . 5 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
5 | 4 | sbbii 2080 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑥 / 𝑎]𝜑) |
6 | sbv 2092 | . . . 4 ⊢ ([𝑥 / 𝑎]𝜑 ↔ 𝜑) | |
7 | 5, 6 | bitri 274 | . . 3 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
8 | 7 | gen2 1800 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
9 | df-ich 44786 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ [𝑥⇄𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 [wsb 2068 [wich 44785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-sb 2069 df-ich 44786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |