Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichv Structured version   Visualization version   GIF version

Theorem ichv 44789
Description: Setvar variables are interchangeable in a wff they do not appear in. (Contributed by SN, 23-Nov-2023.)
Assertion
Ref Expression
ichv [𝑥𝑦]𝜑
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦

Proof of Theorem ichv
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbv 2092 . . . . . . 7 ([𝑎 / 𝑦]𝜑𝜑)
21sbbii 2080 . . . . . 6 ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
3 sbv 2092 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜑)
42, 3bitri 274 . . . . 5 ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
54sbbii 2080 . . . 4 ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑥 / 𝑎]𝜑)
6 sbv 2092 . . . 4 ([𝑥 / 𝑎]𝜑𝜑)
75, 6bitri 274 . . 3 ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
87gen2 1800 . 2 𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
9 df-ich 44786 . 2 ([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
108, 9mpbir 230 1 [𝑥𝑦]𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  [wsb 2068  [wich 44785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-sb 2069  df-ich 44786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator