![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichf | Structured version Visualization version GIF version |
Description: Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.) |
Ref | Expression |
---|---|
ichf.1 | ⊢ Ⅎ𝑥𝜑 |
ichf.2 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
ichf | ⊢ [𝑥⇄𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ichf.2 | . . . . . . . 8 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sbf 2271 | . . . . . . 7 ⊢ ([𝑎 / 𝑦]𝜑 ↔ 𝜑) |
3 | 2 | sbbii 2076 | . . . . . 6 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
4 | ichf.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | sbf 2271 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
6 | 3, 5 | bitri 275 | . . . . 5 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
7 | 6 | sbbii 2076 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑥 / 𝑎]𝜑) |
8 | sbv 2088 | . . . 4 ⊢ ([𝑥 / 𝑎]𝜑 ↔ 𝜑) | |
9 | 7, 8 | bitri 275 | . . 3 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
10 | 9 | gen2 1795 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
11 | df-ich 47399 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | |
12 | 10, 11 | mpbir 231 | 1 ⊢ [𝑥⇄𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 [wsb 2064 [wich 47398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 df-sb 2065 df-ich 47399 |
This theorem is referenced by: ich2al 47420 ich2ex 47421 |
Copyright terms: Public domain | W3C validator |