| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ichf | Structured version Visualization version GIF version | ||
| Description: Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.) |
| Ref | Expression |
|---|---|
| ichf.1 | ⊢ Ⅎ𝑥𝜑 |
| ichf.2 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| ichf | ⊢ [𝑥⇄𝑦]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ichf.2 | . . . . . . . 8 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | sbf 2270 | . . . . . . 7 ⊢ ([𝑎 / 𝑦]𝜑 ↔ 𝜑) |
| 3 | 2 | sbbii 2075 | . . . . . 6 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 4 | ichf.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | sbf 2270 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| 6 | 3, 5 | bitri 275 | . . . . 5 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
| 7 | 6 | sbbii 2075 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑥 / 𝑎]𝜑) |
| 8 | sbv 2087 | . . . 4 ⊢ ([𝑥 / 𝑎]𝜑 ↔ 𝜑) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
| 10 | 9 | gen2 1795 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
| 11 | df-ich 47391 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | |
| 12 | 10, 11 | mpbir 231 | 1 ⊢ [𝑥⇄𝑦]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 [wsb 2063 [wich 47390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 df-sb 2064 df-ich 47391 |
| This theorem is referenced by: ich2al 47412 ich2ex 47413 |
| Copyright terms: Public domain | W3C validator |