Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichf Structured version   Visualization version   GIF version

Theorem ichf 44902
Description: Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.)
Hypotheses
Ref Expression
ichf.1 𝑥𝜑
ichf.2 𝑦𝜑
Assertion
Ref Expression
ichf [𝑥𝑦]𝜑

Proof of Theorem ichf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ichf.2 . . . . . . . 8 𝑦𝜑
21sbf 2263 . . . . . . 7 ([𝑎 / 𝑦]𝜑𝜑)
32sbbii 2079 . . . . . 6 ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
4 ichf.1 . . . . . . 7 𝑥𝜑
54sbf 2263 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜑)
63, 5bitri 274 . . . . 5 ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
76sbbii 2079 . . . 4 ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑥 / 𝑎]𝜑)
8 sbv 2091 . . . 4 ([𝑥 / 𝑎]𝜑𝜑)
97, 8bitri 274 . . 3 ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
109gen2 1799 . 2 𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑)
11 df-ich 44898 . 2 ([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
1210, 11mpbir 230 1 [𝑥𝑦]𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  wnf 1786  [wsb 2067  [wich 44897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-sb 2068  df-ich 44898
This theorem is referenced by:  ich2al  44919  ich2ex  44920
  Copyright terms: Public domain W3C validator