Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ichf | Structured version Visualization version GIF version |
Description: Setvar variables are interchangeable in a wff they are not free in. (Contributed by SN, 23-Nov-2023.) |
Ref | Expression |
---|---|
ichf.1 | ⊢ Ⅎ𝑥𝜑 |
ichf.2 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
ichf | ⊢ [𝑥⇄𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ichf.2 | . . . . . . . 8 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | sbf 2266 | . . . . . . 7 ⊢ ([𝑎 / 𝑦]𝜑 ↔ 𝜑) |
3 | 2 | sbbii 2080 | . . . . . 6 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
4 | ichf.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | sbf 2266 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
6 | 3, 5 | bitri 274 | . . . . 5 ⊢ ([𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
7 | 6 | sbbii 2080 | . . . 4 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ [𝑥 / 𝑎]𝜑) |
8 | sbv 2092 | . . . 4 ⊢ ([𝑥 / 𝑎]𝜑 ↔ 𝜑) | |
9 | 7, 8 | bitri 274 | . . 3 ⊢ ([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
10 | 9 | gen2 1800 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑) |
11 | df-ich 44786 | . 2 ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) | |
12 | 10, 11 | mpbir 230 | 1 ⊢ [𝑥⇄𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 [wich 44785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 df-sb 2069 df-ich 44786 |
This theorem is referenced by: ich2al 44807 ich2ex 44808 |
Copyright terms: Public domain | W3C validator |