MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpid Structured version   Visualization version   GIF version

Theorem ifpid 1074
Description: Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifid 4496. This is essentially pm4.42 1050. (Contributed by BJ, 20-Sep-2019.)
Assertion
Ref Expression
ifpid (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)

Proof of Theorem ifpid
StepHypRef Expression
1 ifptru 1072 . 2 (𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
2 ifpfal 1073 . 2 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
31, 2pm2.61i 182 1 (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  wl-1mintru2  35587
  Copyright terms: Public domain W3C validator