MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpid Structured version   Visualization version   GIF version

Theorem ifpid 1076
Description: Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifid 4571. This is essentially pm4.42 1053. (Contributed by BJ, 20-Sep-2019.)
Assertion
Ref Expression
ifpid (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)

Proof of Theorem ifpid
StepHypRef Expression
1 ifptru 1074 . 2 (𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
2 ifpfal 1075 . 2 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
31, 2pm2.61i 182 1 (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  if-wif 1062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063
This theorem is referenced by:  wl-1mintru2  37472
  Copyright terms: Public domain W3C validator