Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifpid | Structured version Visualization version GIF version |
Description: Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifid 4496. This is essentially pm4.42 1050. (Contributed by BJ, 20-Sep-2019.) |
Ref | Expression |
---|---|
ifpid | ⊢ (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifptru 1072 | . 2 ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)) | |
2 | ifpfal 1073 | . 2 ⊢ (¬ 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)) | |
3 | 1, 2 | pm2.61i 182 | 1 ⊢ (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: wl-1mintru2 35587 |
Copyright terms: Public domain | W3C validator |