MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpid Structured version   Visualization version   GIF version

Theorem ifpid 1073
Description: Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifid 4460. This is essentially pm4.42 1049. (Contributed by BJ, 20-Sep-2019.)
Assertion
Ref Expression
ifpid (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)

Proof of Theorem ifpid
StepHypRef Expression
1 ifptru 1071 . 2 (𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
2 ifpfal 1072 . 2 𝜑 → (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓))
31, 2pm2.61i 185 1 (if-(𝜑, 𝜓, 𝜓) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 209  if-wif 1058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059
This theorem is referenced by:  wl-1mintru2  35208
  Copyright terms: Public domain W3C validator