Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4466 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
2 | iffalse 4469 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-if 4461 |
This theorem is referenced by: csbif 4517 rabsnif 4660 somincom 6044 fsuppmptif 9167 supsn 9240 infsn 9273 wemaplem2 9315 cantnflem1 9456 xrmaxeq 12922 xrmineq 12923 xaddpnf1 12969 xaddmnf1 12971 rexmul 13014 max0add 15031 sumz 15443 prod1 15663 1arithlem4 16636 xpscf 17285 mgm2nsgrplem2 18567 mgm2nsgrplem3 18568 dmdprdsplitlem 19649 fczpsrbag 21135 mplcoe1 21247 mplcoe3 21248 mplcoe5 21250 evlslem2 21298 mdet0 21764 mdetralt2 21767 mdetunilem9 21778 madurid 21802 decpmatid 21928 cnmpopc 24100 pcoval2 24188 pcorevlem 24198 itgz 24954 itgvallem3 24959 iblposlem 24965 iblss2 24979 itgss 24985 ditg0 25026 cnplimc 25060 limcco 25066 dvexp3 25151 ply1nzb 25296 plyeq0lem 25380 dgrcolem2 25444 plydivlem4 25465 radcnv0 25584 efrlim 26128 mumullem2 26338 lgsval2lem 26464 lgsdilem2 26490 fsuppind 40286 dgrsub2 40967 sqrtcval 41256 relexp1idm 41329 relexp0idm 41330 |
Copyright terms: Public domain | W3C validator |