| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4484 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 2 | iffalse 4487 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4479 |
| This theorem is referenced by: csbif 4536 rabsnif 4677 somincom 6087 fsuppmptif 9308 supsn 9382 infsn 9416 wemaplem2 9458 cantnflem1 9604 xrmaxeq 13099 xrmineq 13100 xaddpnf1 13146 xaddmnf1 13148 rexmul 13191 max0add 15235 sumz 15647 prod1 15869 1arithlem4 16856 xpscf 17487 mgm2nsgrplem2 18811 mgm2nsgrplem3 18812 dmdprdsplitlem 19936 fczpsrbag 21846 mplcoe1 21960 mplcoe3 21961 mplcoe5 21963 evlslem2 22002 mdet0 22509 mdetralt2 22512 mdetunilem9 22523 madurid 22547 decpmatid 22673 cnmpopc 24838 pcoval2 24932 pcorevlem 24942 itgz 25698 itgvallem3 25703 iblposlem 25709 iblss2 25723 itgss 25729 ditg0 25770 cnplimc 25804 limcco 25810 dvexp3 25898 ply1nzb 26044 plyeq0lem 26131 dgrcolem2 26196 plydivlem4 26220 radcnv0 26341 efrlim 26895 efrlimOLD 26896 mumullem2 27106 lgsval2lem 27234 lgsdilem2 27260 fsuppind 42563 dgrsub2 43108 sqrtcval 43614 relexp1idm 43687 relexp0idm 43688 |
| Copyright terms: Public domain | W3C validator |