| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4506 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 2 | iffalse 4509 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: csbif 4558 rabsnif 4699 somincom 6123 fsuppmptif 9411 supsn 9485 infsn 9519 wemaplem2 9561 cantnflem1 9703 xrmaxeq 13195 xrmineq 13196 xaddpnf1 13242 xaddmnf1 13244 rexmul 13287 max0add 15329 sumz 15738 prod1 15960 1arithlem4 16946 xpscf 17579 mgm2nsgrplem2 18897 mgm2nsgrplem3 18898 dmdprdsplitlem 20020 fczpsrbag 21881 mplcoe1 21995 mplcoe3 21996 mplcoe5 21998 evlslem2 22037 mdet0 22544 mdetralt2 22547 mdetunilem9 22558 madurid 22582 decpmatid 22708 cnmpopc 24873 pcoval2 24967 pcorevlem 24977 itgz 25734 itgvallem3 25739 iblposlem 25745 iblss2 25759 itgss 25765 ditg0 25806 cnplimc 25840 limcco 25846 dvexp3 25934 ply1nzb 26080 plyeq0lem 26167 dgrcolem2 26232 plydivlem4 26256 radcnv0 26377 efrlim 26931 efrlimOLD 26932 mumullem2 27142 lgsval2lem 27270 lgsdilem2 27296 fsuppind 42613 dgrsub2 43159 sqrtcval 43665 relexp1idm 43738 relexp0idm 43739 |
| Copyright terms: Public domain | W3C validator |