Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4483 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
2 | iffalse 4486 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ifcif 4477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-if 4478 |
This theorem is referenced by: csbif 4534 rabsnif 4675 somincom 6078 fsuppmptif 9260 supsn 9333 infsn 9366 wemaplem2 9408 cantnflem1 9550 xrmaxeq 13018 xrmineq 13019 xaddpnf1 13065 xaddmnf1 13067 rexmul 13110 max0add 15121 sumz 15533 prod1 15753 1arithlem4 16724 xpscf 17373 mgm2nsgrplem2 18654 mgm2nsgrplem3 18655 dmdprdsplitlem 19734 fczpsrbag 21231 mplcoe1 21343 mplcoe3 21344 mplcoe5 21346 evlslem2 21394 mdet0 21860 mdetralt2 21863 mdetunilem9 21874 madurid 21898 decpmatid 22024 cnmpopc 24196 pcoval2 24284 pcorevlem 24294 itgz 25050 itgvallem3 25055 iblposlem 25061 iblss2 25075 itgss 25081 ditg0 25122 cnplimc 25156 limcco 25162 dvexp3 25247 ply1nzb 25392 plyeq0lem 25476 dgrcolem2 25540 plydivlem4 25561 radcnv0 25680 efrlim 26224 mumullem2 26434 lgsval2lem 26560 lgsdilem2 26586 fsuppind 40590 dgrsub2 41274 sqrtcval 41622 relexp1idm 41695 relexp0idm 41696 |
Copyright terms: Public domain | W3C validator |