| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4482 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 2 | iffalse 4485 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-if 4477 |
| This theorem is referenced by: csbif 4534 rabsnif 4677 somincom 6088 fsuppmptif 9293 supsn 9367 infsn 9401 wemaplem2 9443 cantnflem1 9589 xrmaxeq 13088 xrmineq 13089 xaddpnf1 13135 xaddmnf1 13137 rexmul 13180 max0add 15227 sumz 15639 prod1 15861 1arithlem4 16848 xpscf 17479 mgm2nsgrplem2 18837 mgm2nsgrplem3 18838 dmdprdsplitlem 19961 fczpsrbag 21868 mplcoe1 21982 mplcoe3 21983 mplcoe5 21985 evlslem2 22024 mdet0 22531 mdetralt2 22534 mdetunilem9 22545 madurid 22569 decpmatid 22695 cnmpopc 24859 pcoval2 24953 pcorevlem 24963 itgz 25719 itgvallem3 25724 iblposlem 25730 iblss2 25744 itgss 25750 ditg0 25791 cnplimc 25825 limcco 25831 dvexp3 25919 ply1nzb 26065 plyeq0lem 26152 dgrcolem2 26217 plydivlem4 26241 radcnv0 26362 efrlim 26916 efrlimOLD 26917 mumullem2 27127 lgsval2lem 27255 lgsdilem2 27281 fsuppind 42698 dgrsub2 43242 sqrtcval 43748 relexp1idm 43821 relexp0idm 43822 |
| Copyright terms: Public domain | W3C validator |