| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4497 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 2 | iffalse 4500 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: csbif 4549 rabsnif 4690 somincom 6110 fsuppmptif 9357 supsn 9431 infsn 9465 wemaplem2 9507 cantnflem1 9649 xrmaxeq 13146 xrmineq 13147 xaddpnf1 13193 xaddmnf1 13195 rexmul 13238 max0add 15283 sumz 15695 prod1 15917 1arithlem4 16904 xpscf 17535 mgm2nsgrplem2 18853 mgm2nsgrplem3 18854 dmdprdsplitlem 19976 fczpsrbag 21837 mplcoe1 21951 mplcoe3 21952 mplcoe5 21954 evlslem2 21993 mdet0 22500 mdetralt2 22503 mdetunilem9 22514 madurid 22538 decpmatid 22664 cnmpopc 24829 pcoval2 24923 pcorevlem 24933 itgz 25689 itgvallem3 25694 iblposlem 25700 iblss2 25714 itgss 25720 ditg0 25761 cnplimc 25795 limcco 25801 dvexp3 25889 ply1nzb 26035 plyeq0lem 26122 dgrcolem2 26187 plydivlem4 26211 radcnv0 26332 efrlim 26886 efrlimOLD 26887 mumullem2 27097 lgsval2lem 27225 lgsdilem2 27251 fsuppind 42585 dgrsub2 43131 sqrtcval 43637 relexp1idm 43710 relexp0idm 43711 |
| Copyright terms: Public domain | W3C validator |