![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4537 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
2 | iffalse 4540 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: csbif 4588 rabsnif 4728 somincom 6157 fsuppmptif 9437 supsn 9510 infsn 9543 wemaplem2 9585 cantnflem1 9727 xrmaxeq 13218 xrmineq 13219 xaddpnf1 13265 xaddmnf1 13267 rexmul 13310 max0add 15346 sumz 15755 prod1 15977 1arithlem4 16960 xpscf 17612 mgm2nsgrplem2 18945 mgm2nsgrplem3 18946 dmdprdsplitlem 20072 fczpsrbag 21959 mplcoe1 22073 mplcoe3 22074 mplcoe5 22076 evlslem2 22121 mdet0 22628 mdetralt2 22631 mdetunilem9 22642 madurid 22666 decpmatid 22792 cnmpopc 24969 pcoval2 25063 pcorevlem 25073 itgz 25831 itgvallem3 25836 iblposlem 25842 iblss2 25856 itgss 25862 ditg0 25903 cnplimc 25937 limcco 25943 dvexp3 26031 ply1nzb 26177 plyeq0lem 26264 dgrcolem2 26329 plydivlem4 26353 radcnv0 26474 efrlim 27027 efrlimOLD 27028 mumullem2 27238 lgsval2lem 27366 lgsdilem2 27392 fsuppind 42577 dgrsub2 43124 sqrtcval 43631 relexp1idm 43704 relexp0idm 43705 |
Copyright terms: Public domain | W3C validator |