Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4462 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
2 | iffalse 4465 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: csbif 4513 rabsnif 4656 somincom 6028 fsuppmptif 9088 supsn 9161 infsn 9194 wemaplem2 9236 cantnflem1 9377 xrmaxeq 12842 xrmineq 12843 xaddpnf1 12889 xaddmnf1 12891 rexmul 12934 max0add 14950 sumz 15362 prod1 15582 1arithlem4 16555 xpscf 17193 mgm2nsgrplem2 18473 mgm2nsgrplem3 18474 dmdprdsplitlem 19555 fczpsrbag 21036 mplcoe1 21148 mplcoe3 21149 mplcoe5 21151 evlslem2 21199 mdet0 21663 mdetralt2 21666 mdetunilem9 21677 madurid 21701 decpmatid 21827 cnmpopc 23997 pcoval2 24085 pcorevlem 24095 itgz 24850 itgvallem3 24855 iblposlem 24861 iblss2 24875 itgss 24881 ditg0 24922 cnplimc 24956 limcco 24962 dvexp3 25047 ply1nzb 25192 plyeq0lem 25276 dgrcolem2 25340 plydivlem4 25361 radcnv0 25480 efrlim 26024 mumullem2 26234 lgsval2lem 26360 lgsdilem2 26386 fsuppind 40202 dgrsub2 40876 sqrtcval 41138 relexp1idm 41211 relexp0idm 41212 |
Copyright terms: Public domain | W3C validator |