| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4479 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 2 | iffalse 4482 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ifcif 4473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4474 |
| This theorem is referenced by: csbif 4531 rabsnif 4674 somincom 6078 fsuppmptif 9278 supsn 9352 infsn 9386 wemaplem2 9428 cantnflem1 9574 xrmaxeq 13070 xrmineq 13071 xaddpnf1 13117 xaddmnf1 13119 rexmul 13162 max0add 15209 sumz 15621 prod1 15843 1arithlem4 16830 xpscf 17461 mgm2nsgrplem2 18819 mgm2nsgrplem3 18820 dmdprdsplitlem 19944 fczpsrbag 21851 mplcoe1 21965 mplcoe3 21966 mplcoe5 21968 evlslem2 22007 mdet0 22514 mdetralt2 22517 mdetunilem9 22528 madurid 22552 decpmatid 22678 cnmpopc 24842 pcoval2 24936 pcorevlem 24946 itgz 25702 itgvallem3 25707 iblposlem 25713 iblss2 25727 itgss 25733 ditg0 25774 cnplimc 25808 limcco 25814 dvexp3 25902 ply1nzb 26048 plyeq0lem 26135 dgrcolem2 26200 plydivlem4 26224 radcnv0 26345 efrlim 26899 efrlimOLD 26900 mumullem2 27110 lgsval2lem 27238 lgsdilem2 27264 fsuppind 42602 dgrsub2 43147 sqrtcval 43653 relexp1idm 43726 relexp0idm 43727 |
| Copyright terms: Public domain | W3C validator |