| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4531 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 2 | iffalse 4534 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-if 4526 |
| This theorem is referenced by: csbif 4583 rabsnif 4723 somincom 6154 fsuppmptif 9439 supsn 9512 infsn 9545 wemaplem2 9587 cantnflem1 9729 xrmaxeq 13221 xrmineq 13222 xaddpnf1 13268 xaddmnf1 13270 rexmul 13313 max0add 15349 sumz 15758 prod1 15980 1arithlem4 16964 xpscf 17610 mgm2nsgrplem2 18932 mgm2nsgrplem3 18933 dmdprdsplitlem 20057 fczpsrbag 21941 mplcoe1 22055 mplcoe3 22056 mplcoe5 22058 evlslem2 22103 mdet0 22612 mdetralt2 22615 mdetunilem9 22626 madurid 22650 decpmatid 22776 cnmpopc 24955 pcoval2 25049 pcorevlem 25059 itgz 25816 itgvallem3 25821 iblposlem 25827 iblss2 25841 itgss 25847 ditg0 25888 cnplimc 25922 limcco 25928 dvexp3 26016 ply1nzb 26162 plyeq0lem 26249 dgrcolem2 26314 plydivlem4 26338 radcnv0 26459 efrlim 27012 efrlimOLD 27013 mumullem2 27223 lgsval2lem 27351 lgsdilem2 27377 fsuppind 42600 dgrsub2 43147 sqrtcval 43654 relexp1idm 43727 relexp0idm 43728 |
| Copyright terms: Public domain | W3C validator |