| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4494 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 2 | iffalse 4497 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: csbif 4546 rabsnif 4687 somincom 6107 fsuppmptif 9350 supsn 9424 infsn 9458 wemaplem2 9500 cantnflem1 9642 xrmaxeq 13139 xrmineq 13140 xaddpnf1 13186 xaddmnf1 13188 rexmul 13231 max0add 15276 sumz 15688 prod1 15910 1arithlem4 16897 xpscf 17528 mgm2nsgrplem2 18846 mgm2nsgrplem3 18847 dmdprdsplitlem 19969 fczpsrbag 21830 mplcoe1 21944 mplcoe3 21945 mplcoe5 21947 evlslem2 21986 mdet0 22493 mdetralt2 22496 mdetunilem9 22507 madurid 22531 decpmatid 22657 cnmpopc 24822 pcoval2 24916 pcorevlem 24926 itgz 25682 itgvallem3 25687 iblposlem 25693 iblss2 25707 itgss 25713 ditg0 25754 cnplimc 25788 limcco 25794 dvexp3 25882 ply1nzb 26028 plyeq0lem 26115 dgrcolem2 26180 plydivlem4 26204 radcnv0 26325 efrlim 26879 efrlimOLD 26880 mumullem2 27090 lgsval2lem 27218 lgsdilem2 27244 fsuppind 42578 dgrsub2 43124 sqrtcval 43630 relexp1idm 43703 relexp0idm 43704 |
| Copyright terms: Public domain | W3C validator |