![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifid | Structured version Visualization version GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifid | ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4554 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
2 | iffalse 4557 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | 1, 2 | pm2.61i 182 | 1 ⊢ if(𝜑, 𝐴, 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: csbif 4605 rabsnif 4748 somincom 6166 fsuppmptif 9468 supsn 9541 infsn 9574 wemaplem2 9616 cantnflem1 9758 xrmaxeq 13241 xrmineq 13242 xaddpnf1 13288 xaddmnf1 13290 rexmul 13333 max0add 15359 sumz 15770 prod1 15992 1arithlem4 16973 xpscf 17625 mgm2nsgrplem2 18954 mgm2nsgrplem3 18955 dmdprdsplitlem 20081 fczpsrbag 21964 mplcoe1 22078 mplcoe3 22079 mplcoe5 22081 evlslem2 22126 mdet0 22633 mdetralt2 22636 mdetunilem9 22647 madurid 22671 decpmatid 22797 cnmpopc 24974 pcoval2 25068 pcorevlem 25078 itgz 25836 itgvallem3 25841 iblposlem 25847 iblss2 25861 itgss 25867 ditg0 25908 cnplimc 25942 limcco 25948 dvexp3 26036 ply1nzb 26182 plyeq0lem 26269 dgrcolem2 26334 plydivlem4 26356 radcnv0 26477 efrlim 27030 efrlimOLD 27031 mumullem2 27241 lgsval2lem 27369 lgsdilem2 27395 fsuppind 42545 dgrsub2 43092 sqrtcval 43603 relexp1idm 43676 relexp0idm 43677 |
Copyright terms: Public domain | W3C validator |