Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpnot23d Structured version   Visualization version   GIF version

Theorem ifpnot23d 41069
Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.)
Assertion
Ref Expression
ifpnot23d (¬ if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(𝜑, 𝜓, 𝜒))

Proof of Theorem ifpnot23d
StepHypRef Expression
1 ifpnot23 41062 . 2 (¬ if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ ¬ 𝜓, ¬ ¬ 𝜒))
2 notnotb 315 . . 3 (𝜓 ↔ ¬ ¬ 𝜓)
3 notnotb 315 . . 3 (𝜒 ↔ ¬ ¬ 𝜒)
4 ifpbi23 41057 . . 3 (((𝜓 ↔ ¬ ¬ 𝜓) ∧ (𝜒 ↔ ¬ ¬ 𝜒)) → (if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ ¬ 𝜓, ¬ ¬ 𝜒)))
52, 3, 4mp2an 689 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ ¬ 𝜓, ¬ ¬ 𝜒))
61, 5bitr4i 277 1 (¬ if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(𝜑, 𝜓, 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by:  ifpororb  41089
  Copyright terms: Public domain W3C validator