Proof of Theorem ifpbibib
Step | Hyp | Ref
| Expression |
1 | | dfifp2 1061 |
. 2
⊢
(if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏)) ↔ ((𝜑 → (𝜓 ↔ 𝜒)) ∧ (¬ 𝜑 → (𝜃 ↔ 𝜏)))) |
2 | | dfbi2 474 |
. . . . . 6
⊢ ((𝜓 ↔ 𝜒) ↔ ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) |
3 | 2 | imbi2i 335 |
. . . . 5
⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ (𝜑 → ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓)))) |
4 | | jcab 517 |
. . . . 5
⊢ ((𝜑 → ((𝜓 → 𝜒) ∧ (𝜒 → 𝜓))) ↔ ((𝜑 → (𝜓 → 𝜒)) ∧ (𝜑 → (𝜒 → 𝜓)))) |
5 | 3, 4 | bitri 274 |
. . . 4
⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → (𝜓 → 𝜒)) ∧ (𝜑 → (𝜒 → 𝜓)))) |
6 | | dfbi2 474 |
. . . . . 6
⊢ ((𝜃 ↔ 𝜏) ↔ ((𝜃 → 𝜏) ∧ (𝜏 → 𝜃))) |
7 | 6 | imbi2i 335 |
. . . . 5
⊢ ((¬
𝜑 → (𝜃 ↔ 𝜏)) ↔ (¬ 𝜑 → ((𝜃 → 𝜏) ∧ (𝜏 → 𝜃)))) |
8 | | jcab 517 |
. . . . 5
⊢ ((¬
𝜑 → ((𝜃 → 𝜏) ∧ (𝜏 → 𝜃))) ↔ ((¬ 𝜑 → (𝜃 → 𝜏)) ∧ (¬ 𝜑 → (𝜏 → 𝜃)))) |
9 | 7, 8 | bitri 274 |
. . . 4
⊢ ((¬
𝜑 → (𝜃 ↔ 𝜏)) ↔ ((¬ 𝜑 → (𝜃 → 𝜏)) ∧ (¬ 𝜑 → (𝜏 → 𝜃)))) |
10 | 5, 9 | anbi12i 626 |
. . 3
⊢ (((𝜑 → (𝜓 ↔ 𝜒)) ∧ (¬ 𝜑 → (𝜃 ↔ 𝜏))) ↔ (((𝜑 → (𝜓 → 𝜒)) ∧ (𝜑 → (𝜒 → 𝜓))) ∧ ((¬ 𝜑 → (𝜃 → 𝜏)) ∧ (¬ 𝜑 → (𝜏 → 𝜃))))) |
11 | | an4 652 |
. . 3
⊢ ((((𝜑 → (𝜓 → 𝜒)) ∧ (𝜑 → (𝜒 → 𝜓))) ∧ ((¬ 𝜑 → (𝜃 → 𝜏)) ∧ (¬ 𝜑 → (𝜏 → 𝜃)))) ↔ (((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏))) ∧ ((𝜑 → (𝜒 → 𝜓)) ∧ (¬ 𝜑 → (𝜏 → 𝜃))))) |
12 | 10, 11 | bitri 274 |
. 2
⊢ (((𝜑 → (𝜓 ↔ 𝜒)) ∧ (¬ 𝜑 → (𝜃 ↔ 𝜏))) ↔ (((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏))) ∧ ((𝜑 → (𝜒 → 𝜓)) ∧ (¬ 𝜑 → (𝜏 → 𝜃))))) |
13 | | dfifp2 1061 |
. . . . 5
⊢
(if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) ↔ ((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏)))) |
14 | | ifpimimb 41009 |
. . . . 5
⊢
(if-(𝜑, (𝜓 → 𝜒), (𝜃 → 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) |
15 | 13, 14 | bitr3i 276 |
. . . 4
⊢ (((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏))) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) |
16 | | dfifp2 1061 |
. . . . 5
⊢
(if-(𝜑, (𝜒 → 𝜓), (𝜏 → 𝜃)) ↔ ((𝜑 → (𝜒 → 𝜓)) ∧ (¬ 𝜑 → (𝜏 → 𝜃)))) |
17 | | ifpimimb 41009 |
. . . . 5
⊢
(if-(𝜑, (𝜒 → 𝜓), (𝜏 → 𝜃)) ↔ (if-(𝜑, 𝜒, 𝜏) → if-(𝜑, 𝜓, 𝜃))) |
18 | 16, 17 | bitr3i 276 |
. . . 4
⊢ (((𝜑 → (𝜒 → 𝜓)) ∧ (¬ 𝜑 → (𝜏 → 𝜃))) ↔ (if-(𝜑, 𝜒, 𝜏) → if-(𝜑, 𝜓, 𝜃))) |
19 | 15, 18 | anbi12i 626 |
. . 3
⊢ ((((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏))) ∧ ((𝜑 → (𝜒 → 𝜓)) ∧ (¬ 𝜑 → (𝜏 → 𝜃)))) ↔ ((if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏)) ∧ (if-(𝜑, 𝜒, 𝜏) → if-(𝜑, 𝜓, 𝜃)))) |
20 | | dfbi2 474 |
. . 3
⊢
((if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏)) ↔ ((if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏)) ∧ (if-(𝜑, 𝜒, 𝜏) → if-(𝜑, 𝜓, 𝜃)))) |
21 | 19, 20 | bitr4i 277 |
. 2
⊢ ((((𝜑 → (𝜓 → 𝜒)) ∧ (¬ 𝜑 → (𝜃 → 𝜏))) ∧ ((𝜑 → (𝜒 → 𝜓)) ∧ (¬ 𝜑 → (𝜏 → 𝜃)))) ↔ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) |
22 | 1, 12, 21 | 3bitri 296 |
1
⊢
(if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) |