Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in2an Structured version   Visualization version   GIF version

Theorem in2an 42117
Description: The virtual deduction introduction rule converting the second conjunct of the second virtual hypothesis into the antecedent of the conclusion. expd 415 is the non-virtual deduction form of in2an 42117. (Contributed by Alan Sare, 30-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in2an.1 (   𝜑   ,   (𝜓𝜒)   ▶   𝜃   )
Assertion
Ref Expression
in2an (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )

Proof of Theorem in2an
StepHypRef Expression
1 in2an.1 . . . 4 (   𝜑   ,   (𝜓𝜒)   ▶   𝜃   )
21dfvd2i 42094 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
32expd 415 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
43dfvd2ir 42095 1 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  (   wvd2 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-vd2 42087
This theorem is referenced by:  onfrALTVD  42400
  Copyright terms: Public domain W3C validator