Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  in3 Structured version   Visualization version   GIF version

Theorem in3 39657
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
in3.1 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
Assertion
Ref Expression
in3 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )

Proof of Theorem in3
StepHypRef Expression
1 in3.1 . . 3 (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
21dfvd3i 39631 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32dfvd2ir 39625 1 (   𝜑   ,   𝜓   ▶   (𝜒𝜃)   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 39616  (   wvd3 39626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1113  df-vd2 39617  df-vd3 39629
This theorem is referenced by:  e223  39683  suctrALT2VD  39885  en3lplem2VD  39893  exbirVD  39902  exbiriVD  39903  rspsbc2VD  39904  tratrbVD  39910  ssralv2VD  39915  imbi12VD  39922  imbi13VD  39923  truniALTVD  39927  trintALTVD  39929  onfrALTlem2VD  39938
  Copyright terms: Public domain W3C validator