Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > in3 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in3.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
Ref | Expression |
---|---|
in3 | ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in3.1 | . . 3 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
2 | 1 | dfvd3i 42212 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | dfvd2ir 42206 | 1 ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 42197 ( wvd3 42207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-vd2 42198 df-vd3 42210 |
This theorem is referenced by: e223 42255 suctrALT2VD 42456 en3lplem2VD 42464 exbirVD 42473 exbiriVD 42474 rspsbc2VD 42475 tratrbVD 42481 ssralv2VD 42486 imbi12VD 42493 imbi13VD 42494 truniALTVD 42498 trintALTVD 42500 onfrALTlem2VD 42509 |
Copyright terms: Public domain | W3C validator |