| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > in3 | Structured version Visualization version GIF version | ||
| Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| in3.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| Ref | Expression |
|---|---|
| in3 | ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in3.1 | . . 3 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
| 2 | 1 | dfvd3i 44589 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | dfvd2ir 44583 | 1 ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd2 44574 ( wvd3 44584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-vd2 44575 df-vd3 44587 |
| This theorem is referenced by: e223 44632 suctrALT2VD 44832 en3lplem2VD 44840 exbirVD 44849 exbiriVD 44850 rspsbc2VD 44851 tratrbVD 44857 ssralv2VD 44862 imbi12VD 44869 imbi13VD 44870 truniALTVD 44874 trintALTVD 44876 onfrALTlem2VD 44885 |
| Copyright terms: Public domain | W3C validator |