| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3lem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3lem7 48809. (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3lem6.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| iscnrm3lem6 | ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑊 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3lem6.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊) ∧ 𝜓) → 𝜒) | |
| 2 | 1 | 3exp 1120 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊) → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdvv 3211 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑊 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-rex 3070 |
| This theorem is referenced by: iscnrm3lem7 48809 |
| Copyright terms: Public domain | W3C validator |