Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3lem6 Structured version   Visualization version   GIF version

Theorem iscnrm3lem6 46232
Description: Lemma for iscnrm3lem7 46233. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypothesis
Ref Expression
iscnrm3lem6.1 ((𝜑 ∧ (𝑥𝑉𝑦𝑊) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
iscnrm3lem6 (𝜑 → (∃𝑥𝑉𝑦𝑊 𝜓𝜒))
Distinct variable groups:   𝑦,𝑉   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑉(𝑥)   𝑊(𝑥,𝑦)

Proof of Theorem iscnrm3lem6
StepHypRef Expression
1 iscnrm3lem6.1 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑊) ∧ 𝜓) → 𝜒)
213exp 1118 . 2 (𝜑 → ((𝑥𝑉𝑦𝑊) → (𝜓𝜒)))
32rexlimdvv 3222 1 (𝜑 → (∃𝑥𝑉𝑦𝑊 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by:  iscnrm3lem7  46233
  Copyright terms: Public domain W3C validator