Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscnrm3lem7 Structured version   Visualization version   GIF version

Theorem iscnrm3lem7 46121
Description: Lemma for iscnrm3rlem8 46129 and iscnrm3llem2 46132 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024.)
Hypotheses
Ref Expression
iscnrm3lem7.1 (𝑧 = 𝑍 → (𝜒𝜃))
iscnrm3lem7.2 (𝑤 = 𝑊 → (𝜃𝜏))
iscnrm3lem7.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵) ∧ 𝜓) → (𝑍𝐶𝑊𝐷𝜏))
Assertion
Ref Expression
iscnrm3lem7 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧𝐶𝑤𝐷 𝜒))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤,𝑊   𝑤,𝑍,𝑧   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦   𝜏,𝑤   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)   𝜒(𝑧,𝑤)   𝜃(𝑥,𝑦,𝑤)   𝜏(𝑥,𝑦,𝑧)   𝐴(𝑥,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑤)   𝑊(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦)

Proof of Theorem iscnrm3lem7
StepHypRef Expression
1 iscnrm3lem7.3 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵) ∧ 𝜓) → (𝑍𝐶𝑊𝐷𝜏))
2 iscnrm3lem7.1 . . . 4 (𝑧 = 𝑍 → (𝜒𝜃))
3 iscnrm3lem7.2 . . . 4 (𝑤 = 𝑊 → (𝜃𝜏))
42, 3rspc2ev 3564 . . 3 ((𝑍𝐶𝑊𝐷𝜏) → ∃𝑧𝐶𝑤𝐷 𝜒)
51, 4syl 17 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵) ∧ 𝜓) → ∃𝑧𝐶𝑤𝐷 𝜒)
65iscnrm3lem6 46120 1 (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧𝐶𝑤𝐷 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069
This theorem is referenced by:  iscnrm3rlem8  46129  iscnrm3llem2  46132
  Copyright terms: Public domain W3C validator