| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3lem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for iscnrm3rlem8 48828 and iscnrm3llem2 48831 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024.) |
| Ref | Expression |
|---|---|
| iscnrm3lem7.1 | ⊢ (𝑧 = 𝑍 → (𝜒 ↔ 𝜃)) |
| iscnrm3lem7.2 | ⊢ (𝑤 = 𝑊 → (𝜃 ↔ 𝜏)) |
| iscnrm3lem7.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → (𝑍 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝜏)) |
| Ref | Expression |
|---|---|
| iscnrm3lem7 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3lem7.3 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → (𝑍 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝜏)) | |
| 2 | iscnrm3lem7.1 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝜒 ↔ 𝜃)) | |
| 3 | iscnrm3lem7.2 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝜃 ↔ 𝜏)) | |
| 4 | 2, 3 | rspc2ev 3618 | . . 3 ⊢ ((𝑍 ∈ 𝐶 ∧ 𝑊 ∈ 𝐷 ∧ 𝜏) → ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜒) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜒) |
| 6 | 5 | iscnrm3lem6 48819 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧 ∈ 𝐶 ∃𝑤 ∈ 𝐷 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 |
| This theorem is referenced by: iscnrm3rlem8 48828 iscnrm3llem2 48831 |
| Copyright terms: Public domain | W3C validator |