MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtprmirr Structured version   Visualization version   GIF version

Theorem rtprmirr 26698
Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.)
Assertion
Ref Expression
rtprmirr ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))

Proof of Theorem rtprmirr
StepHypRef Expression
1 prmnn 16587 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℕ)
32nnred 12147 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
4 0red 11122 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
52nngt0d 12181 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑃)
64, 3, 5ltled 11268 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ≤ 𝑃)
7 eluzelre 12749 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
87adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
9 eluz2n0 12793 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 0)
109adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 0)
118, 10rereccld 11955 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) ∈ ℝ)
123, 6, 11recxpcld 26660 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ ℝ)
13 eluz2gt1 12820 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
14 recgt1i 12026 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
157, 13, 14syl2anc 584 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
1615simprd 495 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) < 1)
1716adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) < 1)
18 prmgt1 16610 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 1 < 𝑃)
1918adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑃)
20 1red 11120 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℝ)
213, 19, 11, 20cxpltd 26656 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((1 / 𝑁) < 1 ↔ (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1)))
2217, 21mpbid 232 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1))
232nncnd 12148 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℂ)
2423cxp1d 26643 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐1) = 𝑃)
2522, 24breqtrd 5119 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < 𝑃)
2612, 25ltned 11256 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 𝑃)
2726neneqd 2934 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2827adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2923cxp0d 26642 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) = 1)
3015simpld 494 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 0 < (1 / 𝑁))
3130adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < (1 / 𝑁))
323, 19, 4, 11cxpltd 26656 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (0 < (1 / 𝑁) ↔ (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁))))
3331, 32mpbid 232 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁)))
3429, 33eqbrtrrd 5117 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑃𝑐(1 / 𝑁)))
3520, 34gtned 11255 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 1)
3635neneqd 2934 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
3736adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
38 dvdsprime 16600 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
3938adantlr 715 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4039biimpd 229 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 → ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4128, 37, 40mtord 879 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
42 nan 829 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)) ↔ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
4341, 42mpbir 231 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
44 prmz 16588 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
45443ad2ant1 1133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑃 ∈ ℤ)
46 eluz2nn 12788 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
47463ad2ant2 1134 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑁 ∈ ℕ)
48 simp3 1138 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
49 zrtdvds 26697 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
5045, 47, 48, 49syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
51503expia 1121 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
5251ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)))
5343, 52mtod 198 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
541nnrpd 12934 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
55543ad2ant1 1133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑃 ∈ ℝ+)
5673ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ∈ ℝ)
5793ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ≠ 0)
5856, 57rereccld 11955 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → (1 / 𝑁) ∈ ℝ)
5955, 58cxpgt0d 26675 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 0 < (𝑃𝑐(1 / 𝑁)))
60593expia 1121 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → 0 < (𝑃𝑐(1 / 𝑁))))
6160ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁)))))
62 elnnz 12485 . . . . 5 ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ↔ ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁))))
6361, 62imbitrrdi 252 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → (𝑃𝑐(1 / 𝑁)) ∈ ℕ))
6453, 63mtod 198 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
65443ad2ant1 1133 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑃 ∈ ℤ)
66463ad2ant2 1134 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈ ℕ)
67 simp3 1138 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
68 zrtelqelz 26696 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
6965, 66, 67, 68syl3anc 1373 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
70693expia 1121 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℚ → (𝑃𝑐(1 / 𝑁)) ∈ ℤ))
7164, 70mtod 198 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
7212, 71eldifd 3909 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cdif 3895   class class class wbr 5093  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014   < clt 11153   / cdiv 11781  cn 12132  2c2 12187  cz 12475  cuz 12738  cq 12848  +crp 12892  cdvds 16165  cprime 16584  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-dvds 16166  df-gcd 16408  df-prm 16585  df-numer 16648  df-denom 16649  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  2sqr3minply  33814  fltne  42763
  Copyright terms: Public domain W3C validator