MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtprmirr Structured version   Visualization version   GIF version

Theorem rtprmirr 26791
Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.)
Assertion
Ref Expression
rtprmirr ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))

Proof of Theorem rtprmirr
StepHypRef Expression
1 prmnn 16677 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 479 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℕ)
32nnred 12281 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
4 0red 11269 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
52nngt0d 12315 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑃)
64, 3, 5ltled 11414 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ≤ 𝑃)
7 eluzelre 12887 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
87adantl 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
9 eluz2n0 12926 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 0)
109adantl 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 0)
118, 10rereccld 12094 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) ∈ ℝ)
123, 6, 11recxpcld 26753 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ ℝ)
13 eluz2gt1 12958 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
14 recgt1i 12165 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
157, 13, 14syl2anc 582 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
1615simprd 494 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) < 1)
1716adantl 480 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) < 1)
18 prmgt1 16700 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 1 < 𝑃)
1918adantr 479 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑃)
20 1red 11267 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℝ)
213, 19, 11, 20cxpltd 26749 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((1 / 𝑁) < 1 ↔ (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1)))
2217, 21mpbid 231 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1))
232nncnd 12282 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℂ)
2423cxp1d 26736 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐1) = 𝑃)
2522, 24breqtrd 5181 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < 𝑃)
2612, 25ltned 11402 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 𝑃)
2726neneqd 2935 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2827adantr 479 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2923cxp0d 26735 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) = 1)
3015simpld 493 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 0 < (1 / 𝑁))
3130adantl 480 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < (1 / 𝑁))
323, 19, 4, 11cxpltd 26749 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (0 < (1 / 𝑁) ↔ (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁))))
3331, 32mpbid 231 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁)))
3429, 33eqbrtrrd 5179 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑃𝑐(1 / 𝑁)))
3520, 34gtned 11401 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 1)
3635neneqd 2935 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
3736adantr 479 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
38 dvdsprime 16690 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
3938adantlr 713 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4039biimpd 228 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 → ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4128, 37, 40mtord 877 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
42 nan 828 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)) ↔ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
4341, 42mpbir 230 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
44 prmz 16678 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
45443ad2ant1 1130 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑃 ∈ ℤ)
46 eluz2nn 12922 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
47463ad2ant2 1131 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑁 ∈ ℕ)
48 simp3 1135 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
49 zrtdvds 26790 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
5045, 47, 48, 49syl3anc 1368 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
51503expia 1118 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
5251ancld 549 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)))
5343, 52mtod 197 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
541nnrpd 13070 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
55543ad2ant1 1130 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑃 ∈ ℝ+)
5673ad2ant2 1131 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ∈ ℝ)
5793ad2ant2 1131 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ≠ 0)
5856, 57rereccld 12094 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → (1 / 𝑁) ∈ ℝ)
5955, 58cxpgt0d 26768 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 0 < (𝑃𝑐(1 / 𝑁)))
60593expia 1118 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → 0 < (𝑃𝑐(1 / 𝑁))))
6160ancld 549 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁)))))
62 elnnz 12622 . . . . 5 ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ↔ ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁))))
6361, 62imbitrrdi 251 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → (𝑃𝑐(1 / 𝑁)) ∈ ℕ))
6453, 63mtod 197 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
65443ad2ant1 1130 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑃 ∈ ℤ)
66463ad2ant2 1131 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈ ℕ)
67 simp3 1135 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
68 zrtelqelz 26789 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
6965, 66, 67, 68syl3anc 1368 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
70693expia 1118 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℚ → (𝑃𝑐(1 / 𝑁)) ∈ ℤ))
7164, 70mtod 197 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
7212, 71eldifd 3958 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  cdif 3944   class class class wbr 5155  cfv 6556  (class class class)co 7426  cr 11159  0cc0 11160  1c1 11161   < clt 11300   / cdiv 11923  cn 12266  2c2 12321  cz 12612  cuz 12876  cq 12986  +crp 13030  cdvds 16258  cprime 16674  𝑐ccxp 26585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-inf2 9686  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238  ax-addf 11239
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-se 5640  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-isom 6565  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8005  df-2nd 8006  df-supp 8177  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-map 8859  df-pm 8860  df-ixp 8929  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-fsupp 9408  df-fi 9456  df-sup 9487  df-inf 9488  df-oi 9555  df-card 9984  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12613  df-dec 12732  df-uz 12877  df-q 12987  df-rp 13031  df-xneg 13148  df-xadd 13149  df-xmul 13150  df-ioo 13384  df-ioc 13385  df-ico 13386  df-icc 13387  df-fz 13541  df-fzo 13684  df-fl 13814  df-mod 13892  df-seq 14024  df-exp 14084  df-fac 14293  df-bc 14322  df-hash 14350  df-shft 15074  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-limsup 15475  df-clim 15492  df-rlim 15493  df-sum 15693  df-ef 16071  df-sin 16073  df-cos 16074  df-pi 16076  df-dvds 16259  df-gcd 16497  df-prm 16675  df-numer 16739  df-denom 16740  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-starv 17283  df-sca 17284  df-vsca 17285  df-ip 17286  df-tset 17287  df-ple 17288  df-ds 17290  df-unif 17291  df-hom 17292  df-cco 17293  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-submnd 18776  df-mulg 19064  df-cntz 19313  df-cmn 19782  df-psmet 21337  df-xmet 21338  df-met 21339  df-bl 21340  df-mopn 21341  df-fbas 21342  df-fg 21343  df-cnfld 21346  df-top 22890  df-topon 22907  df-topsp 22929  df-bases 22943  df-cld 23017  df-ntr 23018  df-cls 23019  df-nei 23096  df-lp 23134  df-perf 23135  df-cn 23225  df-cnp 23226  df-haus 23313  df-tx 23560  df-hmeo 23753  df-fil 23844  df-fm 23936  df-flim 23937  df-flf 23938  df-xms 24320  df-ms 24321  df-tms 24322  df-cncf 24892  df-limc 25889  df-dv 25890  df-log 26586  df-cxp 26587
This theorem is referenced by:  2sqr3minply  33609  fltne  42314
  Copyright terms: Public domain W3C validator