MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtprmirr Structured version   Visualization version   GIF version

Theorem rtprmirr 26670
Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.)
Assertion
Ref Expression
rtprmirr ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))

Proof of Theorem rtprmirr
StepHypRef Expression
1 prmnn 16644 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℕ)
32nnred 12201 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
4 0red 11177 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
52nngt0d 12235 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑃)
64, 3, 5ltled 11322 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ≤ 𝑃)
7 eluzelre 12804 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
87adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
9 eluz2n0 12852 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 0)
109adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 0)
118, 10rereccld 12009 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) ∈ ℝ)
123, 6, 11recxpcld 26632 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ ℝ)
13 eluz2gt1 12879 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
14 recgt1i 12080 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
157, 13, 14syl2anc 584 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
1615simprd 495 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) < 1)
1716adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) < 1)
18 prmgt1 16667 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 1 < 𝑃)
1918adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑃)
20 1red 11175 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℝ)
213, 19, 11, 20cxpltd 26628 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((1 / 𝑁) < 1 ↔ (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1)))
2217, 21mpbid 232 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1))
232nncnd 12202 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℂ)
2423cxp1d 26615 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐1) = 𝑃)
2522, 24breqtrd 5133 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < 𝑃)
2612, 25ltned 11310 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 𝑃)
2726neneqd 2930 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2827adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2923cxp0d 26614 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) = 1)
3015simpld 494 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 0 < (1 / 𝑁))
3130adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < (1 / 𝑁))
323, 19, 4, 11cxpltd 26628 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (0 < (1 / 𝑁) ↔ (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁))))
3331, 32mpbid 232 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁)))
3429, 33eqbrtrrd 5131 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑃𝑐(1 / 𝑁)))
3520, 34gtned 11309 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 1)
3635neneqd 2930 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
3736adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
38 dvdsprime 16657 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
3938adantlr 715 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4039biimpd 229 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 → ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4128, 37, 40mtord 879 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
42 nan 829 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)) ↔ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
4341, 42mpbir 231 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
44 prmz 16645 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
45443ad2ant1 1133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑃 ∈ ℤ)
46 eluz2nn 12847 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
47463ad2ant2 1134 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑁 ∈ ℕ)
48 simp3 1138 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
49 zrtdvds 26669 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
5045, 47, 48, 49syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
51503expia 1121 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
5251ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)))
5343, 52mtod 198 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
541nnrpd 12993 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
55543ad2ant1 1133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑃 ∈ ℝ+)
5673ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ∈ ℝ)
5793ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ≠ 0)
5856, 57rereccld 12009 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → (1 / 𝑁) ∈ ℝ)
5955, 58cxpgt0d 26647 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 0 < (𝑃𝑐(1 / 𝑁)))
60593expia 1121 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → 0 < (𝑃𝑐(1 / 𝑁))))
6160ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁)))))
62 elnnz 12539 . . . . 5 ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ↔ ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁))))
6361, 62imbitrrdi 252 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → (𝑃𝑐(1 / 𝑁)) ∈ ℕ))
6453, 63mtod 198 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
65443ad2ant1 1133 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑃 ∈ ℤ)
66463ad2ant2 1134 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈ ℕ)
67 simp3 1138 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
68 zrtelqelz 26668 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
6965, 66, 67, 68syl3anc 1373 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
70693expia 1121 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℚ → (𝑃𝑐(1 / 𝑁)) ∈ ℤ))
7164, 70mtod 198 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
7212, 71eldifd 3925 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   < clt 11208   / cdiv 11835  cn 12186  2c2 12241  cz 12529  cuz 12793  cq 12907  +crp 12951  cdvds 16222  cprime 16641  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-prm 16642  df-numer 16705  df-denom 16706  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  2sqr3minply  33770  fltne  42632
  Copyright terms: Public domain W3C validator