Proof of Theorem rtprmirr
Step | Hyp | Ref
| Expression |
1 | | prmnn 16721 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑃 ∈ ℕ) |
3 | 2 | nnred 12308 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑃 ∈ ℝ) |
4 | | 0red 11293 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 ∈ ℝ) |
5 | 2 | nngt0d 12342 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 < 𝑃) |
6 | 4, 3, 5 | ltled 11438 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 ≤ 𝑃) |
7 | | eluzelre 12914 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℝ) |
8 | 7 | adantl 481 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ∈ ℝ) |
9 | | eluz2n0 12953 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ≠ 0) |
10 | 9 | adantl 481 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ≠ 0) |
11 | 8, 10 | rereccld 12121 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (1 / 𝑁) ∈ ℝ) |
12 | 3, 6, 11 | recxpcld 26783 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ∈
ℝ) |
13 | | eluz2gt1 12985 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘2) → 1 < 𝑁) |
14 | | recgt1i 12192 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℝ ∧ 1 <
𝑁) → (0 < (1 /
𝑁) ∧ (1 / 𝑁) < 1)) |
15 | 7, 13, 14 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘2) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1)) |
16 | 15 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘2) → (1 / 𝑁) < 1) |
17 | 16 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (1 / 𝑁) < 1) |
18 | | prmgt1 16744 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
19 | 18 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 1 < 𝑃) |
20 | | 1red 11291 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 1 ∈ ℝ) |
21 | 3, 19, 11, 20 | cxpltd 26779 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((1 / 𝑁) < 1 ↔ (𝑃↑𝑐(1 / 𝑁)) < (𝑃↑𝑐1))) |
22 | 17, 21 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) < (𝑃↑𝑐1)) |
23 | 2 | nncnd 12309 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑃 ∈ ℂ) |
24 | 23 | cxp1d 26766 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐1) = 𝑃) |
25 | 22, 24 | breqtrd 5192 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) < 𝑃) |
26 | 12, 25 | ltned 11426 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ≠ 𝑃) |
27 | 26 | neneqd 2951 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) = 𝑃) |
28 | 27 | adantr 480 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) = 𝑃) |
29 | 23 | cxp0d 26765 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐0) =
1) |
30 | 15 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘2) → 0 < (1 / 𝑁)) |
31 | 30 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 0 < (1 / 𝑁)) |
32 | 3, 19, 4, 11 | cxpltd 26779 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (0 < (1 / 𝑁) ↔ (𝑃↑𝑐0) < (𝑃↑𝑐(1 /
𝑁)))) |
33 | 31, 32 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐0) < (𝑃↑𝑐(1 /
𝑁))) |
34 | 29, 33 | eqbrtrrd 5190 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → 1 < (𝑃↑𝑐(1 / 𝑁))) |
35 | 20, 34 | gtned 11425 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ≠ 1) |
36 | 35 | neneqd 2951 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) = 1) |
37 | 36 | adantr 480 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) = 1) |
38 | | dvdsprime 16734 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝑐(1 /
𝑁)) ∈ ℕ) →
((𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃↑𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃↑𝑐(1 / 𝑁)) = 1))) |
39 | 38 | adantlr 714 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) →
((𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃↑𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃↑𝑐(1 / 𝑁)) = 1))) |
40 | 39 | biimpd 229 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) →
((𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃 → ((𝑃↑𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃↑𝑐(1 / 𝑁)) = 1))) |
41 | 28, 37, 40 | mtord 878 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃) |
42 | | nan 829 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃)) ↔ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ≥‘2))
∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → ¬
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃)) |
43 | 41, 42 | mpbir 231 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃)) |
44 | | prmz 16722 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
45 | 44 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → 𝑃 ∈
ℤ) |
46 | | eluz2nn 12949 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
47 | 46 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → 𝑁 ∈
ℕ) |
48 | | simp3 1138 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃↑𝑐(1 /
𝑁)) ∈
ℕ) |
49 | | zrtdvds 26820 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∈ ℕ) →
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃) |
50 | 45, 47, 48, 49 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃) |
51 | 50 | 3expia 1121 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ → (𝑃↑𝑐(1 /
𝑁)) ∥ 𝑃)) |
52 | 51 | ancld 550 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℕ → ((𝑃↑𝑐(1 /
𝑁)) ∈ ℕ ∧
(𝑃↑𝑐(1 / 𝑁)) ∥ 𝑃))) |
53 | 43, 52 | mtod 198 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) ∈
ℕ) |
54 | 1 | nnrpd 13097 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ+) |
55 | 54 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 𝑃 ∈
ℝ+) |
56 | 7 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ∈
ℝ) |
57 | 9 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ≠ 0) |
58 | 56, 57 | rereccld 12121 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → (1 /
𝑁) ∈
ℝ) |
59 | 55, 58 | cxpgt0d 26798 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℤ) → 0 <
(𝑃↑𝑐(1 / 𝑁))) |
60 | 59 | 3expia 1121 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ → 0 <
(𝑃↑𝑐(1 / 𝑁)))) |
61 | 60 | ancld 550 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ → ((𝑃↑𝑐(1 /
𝑁)) ∈ ℤ ∧ 0
< (𝑃↑𝑐(1 / 𝑁))))) |
62 | | elnnz 12649 |
. . . . 5
⊢ ((𝑃↑𝑐(1 /
𝑁)) ∈ ℕ ↔
((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 <
(𝑃↑𝑐(1 / 𝑁)))) |
63 | 61, 62 | imbitrrdi 252 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℤ → (𝑃↑𝑐(1 /
𝑁)) ∈
ℕ)) |
64 | 53, 63 | mtod 198 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) ∈
ℤ) |
65 | 44 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℚ) → 𝑃 ∈
ℤ) |
66 | 46 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈
ℕ) |
67 | | simp3 1138 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃↑𝑐(1 /
𝑁)) ∈
ℚ) |
68 | | zrtelqelz 26819 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃↑𝑐(1 /
𝑁)) ∈ ℚ) →
(𝑃↑𝑐(1 / 𝑁)) ∈
ℤ) |
69 | 65, 66, 67, 68 | syl3anc 1371 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2) ∧ (𝑃↑𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃↑𝑐(1 /
𝑁)) ∈
ℤ) |
70 | 69 | 3expia 1121 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝑃↑𝑐(1 / 𝑁)) ∈ ℚ → (𝑃↑𝑐(1 /
𝑁)) ∈
ℤ)) |
71 | 64, 70 | mtod 198 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝑃↑𝑐(1 / 𝑁)) ∈
ℚ) |
72 | 12, 71 | eldifd 3987 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑃↑𝑐(1 / 𝑁)) ∈ (ℝ ∖
ℚ)) |