MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rtprmirr Structured version   Visualization version   GIF version

Theorem rtprmirr 26698
Description: The root of a prime number is irrational. (Contributed by Steven Nguyen, 6-Apr-2023.)
Assertion
Ref Expression
rtprmirr ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))

Proof of Theorem rtprmirr
StepHypRef Expression
1 prmnn 16585 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℕ)
32nnred 12140 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℝ)
4 0red 11115 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
52nngt0d 12174 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑃)
64, 3, 5ltled 11261 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ≤ 𝑃)
7 eluzelre 12743 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
87adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
9 eluz2n0 12791 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 0)
109adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 0)
118, 10rereccld 11948 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) ∈ ℝ)
123, 6, 11recxpcld 26660 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ ℝ)
13 eluz2gt1 12818 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
14 recgt1i 12019 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 1 < 𝑁) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
157, 13, 14syl2anc 584 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (0 < (1 / 𝑁) ∧ (1 / 𝑁) < 1))
1615simprd 495 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (1 / 𝑁) < 1)
1716adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (1 / 𝑁) < 1)
18 prmgt1 16608 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 1 < 𝑃)
1918adantr 480 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑃)
20 1red 11113 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℝ)
213, 19, 11, 20cxpltd 26656 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((1 / 𝑁) < 1 ↔ (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1)))
2217, 21mpbid 232 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < (𝑃𝑐1))
232nncnd 12141 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑃 ∈ ℂ)
2423cxp1d 26643 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐1) = 𝑃)
2522, 24breqtrd 5117 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) < 𝑃)
2612, 25ltned 11249 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 𝑃)
2726neneqd 2933 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2827adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 𝑃)
2923cxp0d 26642 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) = 1)
3015simpld 494 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → 0 < (1 / 𝑁))
3130adantl 481 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < (1 / 𝑁))
323, 19, 4, 11cxpltd 26656 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (0 < (1 / 𝑁) ↔ (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁))))
3331, 32mpbid 232 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐0) < (𝑃𝑐(1 / 𝑁)))
3429, 33eqbrtrrd 5115 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < (𝑃𝑐(1 / 𝑁)))
3520, 34gtned 11248 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ≠ 1)
3635neneqd 2933 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
3736adantr 480 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) = 1)
38 dvdsprime 16598 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
3938adantlr 715 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 ↔ ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4039biimpd 229 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ((𝑃𝑐(1 / 𝑁)) ∥ 𝑃 → ((𝑃𝑐(1 / 𝑁)) = 𝑃 ∨ (𝑃𝑐(1 / 𝑁)) = 1)))
4128, 37, 40mtord 879 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
42 nan 829 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)) ↔ (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → ¬ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
4341, 42mpbir 231 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
44 prmz 16586 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
45443ad2ant1 1133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑃 ∈ ℤ)
46 eluz2nn 12786 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
47463ad2ant2 1134 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → 𝑁 ∈ ℕ)
48 simp3 1138 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
49 zrtdvds 26697 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
5045, 47, 48, 49syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℕ) → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)
51503expia 1121 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → (𝑃𝑐(1 / 𝑁)) ∥ 𝑃))
5251ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ → ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∥ 𝑃)))
5343, 52mtod 198 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℕ)
541nnrpd 12932 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
55543ad2ant1 1133 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑃 ∈ ℝ+)
5673ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ∈ ℝ)
5793ad2ant2 1134 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 𝑁 ≠ 0)
5856, 57rereccld 11948 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → (1 / 𝑁) ∈ ℝ)
5955, 58cxpgt0d 26675 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℤ) → 0 < (𝑃𝑐(1 / 𝑁)))
60593expia 1121 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → 0 < (𝑃𝑐(1 / 𝑁))))
6160ancld 550 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁)))))
62 elnnz 12478 . . . . 5 ((𝑃𝑐(1 / 𝑁)) ∈ ℕ ↔ ((𝑃𝑐(1 / 𝑁)) ∈ ℤ ∧ 0 < (𝑃𝑐(1 / 𝑁))))
6361, 62imbitrrdi 252 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℤ → (𝑃𝑐(1 / 𝑁)) ∈ ℕ))
6453, 63mtod 198 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
65443ad2ant1 1133 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑃 ∈ ℤ)
66463ad2ant2 1134 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → 𝑁 ∈ ℕ)
67 simp3 1138 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
68 zrtelqelz 26696 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
6965, 66, 67, 68syl3anc 1373 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2) ∧ (𝑃𝑐(1 / 𝑁)) ∈ ℚ) → (𝑃𝑐(1 / 𝑁)) ∈ ℤ)
70693expia 1121 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑃𝑐(1 / 𝑁)) ∈ ℚ → (𝑃𝑐(1 / 𝑁)) ∈ ℤ))
7164, 70mtod 198 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝑃𝑐(1 / 𝑁)) ∈ ℚ)
7212, 71eldifd 3913 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑃𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3899   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   < clt 11146   / cdiv 11774  cn 12125  2c2 12180  cz 12468  cuz 12732  cq 12846  +crp 12890  cdvds 16163  cprime 16582  𝑐ccxp 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-numer 16646  df-denom 16647  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  2sqr3minply  33791  fltne  42683
  Copyright terms: Public domain W3C validator