MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inar1 Structured version   Visualization version   GIF version

Theorem inar1 10189
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is equipotent to 𝐴. (Contributed by Mario Carneiro, 6-Jun-2013.)
Assertion
Ref Expression
inar1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)

Proof of Theorem inar1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10104 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 10102 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
31, 2syl 17 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ On)
4 winalim 10109 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
51, 4syl 17 . . . . 5 (𝐴 ∈ Inacc → Lim 𝐴)
6 r1lim 9193 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
73, 5, 6syl2anc 586 . . . 4 (𝐴 ∈ Inacc → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
8 onelon 6209 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
93, 8sylan 582 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 eleq1 2898 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
11 fveq2 6663 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1211breq1d 5067 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘∅) ≺ 𝐴))
1310, 12imbi12d 347 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴)))
14 eleq1 2898 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
15 fveq2 6663 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
1615breq1d 5067 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
1714, 16imbi12d 347 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)))
18 eleq1 2898 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
19 fveq2 6663 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2019breq1d 5067 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘suc 𝑦) ≺ 𝐴))
2118, 20imbi12d 347 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
22 ne0i 4298 . . . . . . . . . . . . 13 (∅ ∈ 𝐴𝐴 ≠ ∅)
23 0sdomg 8638 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ≺ 𝐴𝐴 ≠ ∅))
2422, 23syl5ibr 248 . . . . . . . . . . . 12 (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ≺ 𝐴))
25 r10 9189 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
2625breq1i 5064 . . . . . . . . . . . 12 ((𝑅1‘∅) ≺ 𝐴 ↔ ∅ ≺ 𝐴)
2724, 26syl6ibr 254 . . . . . . . . . . 11 (𝐴 ∈ On → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
281, 2, 273syl 18 . . . . . . . . . 10 (𝐴 ∈ Inacc → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
29 eloni 6194 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Ord 𝐴)
30 ordtr 6198 . . . . . . . . . . . . . . 15 (Ord 𝐴 → Tr 𝐴)
3129, 30syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Tr 𝐴)
32 trsuc 6268 . . . . . . . . . . . . . . 15 ((Tr 𝐴 ∧ suc 𝑦𝐴) → 𝑦𝐴)
3332ex 415 . . . . . . . . . . . . . 14 (Tr 𝐴 → (suc 𝑦𝐴𝑦𝐴))
343, 31, 333syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc → (suc 𝑦𝐴𝑦𝐴))
3534adantl 484 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → (suc 𝑦𝐴𝑦𝐴))
36 r1suc 9191 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37 fvex 6676 . . . . . . . . . . . . . . . . . 18 (𝑅1𝑦) ∈ V
3837cardid 9961 . . . . . . . . . . . . . . . . 17 (card‘(𝑅1𝑦)) ≈ (𝑅1𝑦)
3938ensymi 8551 . . . . . . . . . . . . . . . 16 (𝑅1𝑦) ≈ (card‘(𝑅1𝑦))
40 pwen 8682 . . . . . . . . . . . . . . . 16 ((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) → 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
4139, 40ax-mp 5 . . . . . . . . . . . . . . 15 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦))
4236, 41eqbrtrdi 5096 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
43 winacard 10106 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
4443eleq2d 2896 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
45 cardsdom 9969 . . . . . . . . . . . . . . . . . . 19 (((𝑅1𝑦) ∈ V ∧ 𝐴 ∈ On) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4637, 2, 45sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4744, 46bitr3d 283 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
49 elina 10101 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴 𝒫 𝑧𝐴))
5049simp3bi 1141 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inacc → ∀𝑧𝐴 𝒫 𝑧𝐴)
51 pweq 4540 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (card‘(𝑅1𝑦)) → 𝒫 𝑧 = 𝒫 (card‘(𝑅1𝑦)))
5251breq1d 5067 . . . . . . . . . . . . . . . . . 18 (𝑧 = (card‘(𝑅1𝑦)) → (𝒫 𝑧𝐴 ↔ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5352rspccv 3618 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴 𝒫 𝑧𝐴 → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5450, 53syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5548, 54sylbird 262 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inacc → ((𝑅1𝑦) ≺ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5655imp 409 . . . . . . . . . . . . . 14 ((𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴) → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴)
57 ensdomtr 8645 . . . . . . . . . . . . . 14 (((𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)) ∧ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5842, 56, 57syl2an 597 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴)) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5958expr 459 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑅1𝑦) ≺ 𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))
6035, 59imim12d 81 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
6160ex 415 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴 ∈ Inacc → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))))
62 vex 3496 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
63 r1lim 9193 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
6462, 63mpan 688 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
65 nfcv 2975 . . . . . . . . . . . . . . . . . . 19 𝑦𝑧
66 nfcv 2975 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑅1𝑧)
67 nfcv 2975 . . . . . . . . . . . . . . . . . . . 20 𝑦
68 nfiu1 4944 . . . . . . . . . . . . . . . . . . . 20 𝑦 𝑦𝑥 (card‘(𝑅1𝑦))
6966, 67, 68nfbr 5104 . . . . . . . . . . . . . . . . . . 19 𝑦(𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
70 fveq2 6663 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑅1𝑦) = (𝑅1𝑧))
7170breq1d 5067 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
72 fvex 6676 . . . . . . . . . . . . . . . . . . . . . 22 (card‘(𝑅1𝑦)) ∈ V
7362, 72iunex 7661 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V
74 ssiun2 4962 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥 → (card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)))
75 ssdomg 8547 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V → ((card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)) → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
7673, 74, 75mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥 → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
77 endomtr 8559 . . . . . . . . . . . . . . . . . . . 20 (((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) ∧ (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7839, 76, 77sylancr 589 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7965, 69, 71, 78vtoclgaf 3571 . . . . . . . . . . . . . . . . . 18 (𝑧𝑥 → (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
8079rgen 3146 . . . . . . . . . . . . . . . . 17 𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
81 iundom 9956 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ ∀𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))))
8262, 80, 81mp2an 690 . . . . . . . . . . . . . . . 16 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦)))
8362, 73unex 7461 . . . . . . . . . . . . . . . . . . . 20 (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V
84 ssun2 4147 . . . . . . . . . . . . . . . . . . . 20 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
85 ssdomg 8547 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8683, 84, 85mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
8762xpdom2 8604 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8886, 87ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
89 ssun1 4146 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
90 ssdomg 8547 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9183, 89, 90mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
9283xpdom1 8608 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
94 domtr 8554 . . . . . . . . . . . . . . . . . 18 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9588, 93, 94mp2an 690 . . . . . . . . . . . . . . . . 17 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
96 limomss 7577 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → ω ⊆ 𝑥)
9796, 89sstrdi 3977 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
98 ssdomg 8547 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9983, 97, 98mpsyl 68 . . . . . . . . . . . . . . . . . 18 (Lim 𝑥 → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
100 infxpidm 9976 . . . . . . . . . . . . . . . . . 18 (ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
102 domentr 8560 . . . . . . . . . . . . . . . . 17 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10395, 101, 102sylancr 589 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
104 domtr 8554 . . . . . . . . . . . . . . . 16 (( 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10582, 103, 104sylancr 589 . . . . . . . . . . . . . . 15 (Lim 𝑥 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10664, 105eqbrtrd 5079 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
107106ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
108 eleq1a 2906 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 = 𝑥𝐴𝐴))
109 ordirr 6202 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴 → ¬ 𝐴𝐴)
1103, 29, 1093syl 18 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inacc → ¬ 𝐴𝐴)
111108, 110nsyli 160 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥))
112111imp 409 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐴 ∈ Inacc) → ¬ 𝐴 = 𝑥)
113112ad2ant2r 745 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑥)
114 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
115 limord 6243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
11662elon 6193 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On ↔ Ord 𝑥)
117115, 116sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑥𝑥 ∈ On)
118117ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥 ∈ On)
119 cardf 9964 . . . . . . . . . . . . . . . . . . . . . . . . 25 card:V⟶On
120 r1fnon 9188 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑅1 Fn On
121 dffn2 6509 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
122120, 121mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑅1:On⟶V
123 fco 6524 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((card:V⟶On ∧ 𝑅1:On⟶V) → (card ∘ 𝑅1):On⟶On)
124119, 122, 123mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (card ∘ 𝑅1):On⟶On
125 onss 7497 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → 𝑥 ⊆ On)
126 fssres 6537 . . . . . . . . . . . . . . . . . . . . . . . 24 (((card ∘ 𝑅1):On⟶On ∧ 𝑥 ⊆ On) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
127124, 125, 126sylancr 589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
128 ffn 6507 . . . . . . . . . . . . . . . . . . . . . . 23 (((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
129118, 127, 1283syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
1303ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝐴 ∈ On)
131 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝑥)
132 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑥𝐴)
133 ontr1 6230 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
134133imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ (𝑦𝑥𝑥𝐴)) → 𝑦𝐴)
135130, 131, 132, 134syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝐴)
13637, 130, 45sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
1371, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐴 ∈ Inacc → (card‘𝐴) = 𝐴)
138137ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (card‘𝐴) = 𝐴)
139138eleq2d 2896 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
140136, 139bitr3d 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
141140biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 → (card‘(𝑅1𝑦)) ∈ 𝐴))
142135, 141embantd 59 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ∈ 𝐴))
143117ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → 𝑥 ∈ On)
144 fvres 6682 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝑥 → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
145144adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
146 onelon 6209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
147 fvco3 6753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅1:On⟶V ∧ 𝑦 ∈ On) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
148122, 146, 147sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
149145, 148eqtrd 2854 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
150143, 149sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
151150eleq1d 2895 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
152142, 151sylibrd 261 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
153152ralimdva 3175 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
154153impr 457 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴)
155 ffnfv 6875 . . . . . . . . . . . . . . . . . . . . . 22 (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ↔ (((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
156129, 154, 155sylanbrc 585 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴)
157 eleq2 2899 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (𝑧𝐴𝑧 𝑦𝑥 (card‘(𝑅1𝑦))))
158157biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → 𝑧 𝑦𝑥 (card‘(𝑅1𝑦)))
159 eliun 4914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ ∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)))
160 cardon 9365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (card‘(𝑅1𝑦)) ∈ On
161160onelssi 6292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (card‘(𝑅1𝑦)))
162149sseq2d 3997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ↔ 𝑧 ⊆ (card‘(𝑅1𝑦))))
163161, 162syl5ibr 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
164163reximdva 3272 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ On → (∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
165159, 164syl5bi 244 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
166158, 165syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
167166expdimp 455 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
168167ralrimiv 3179 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
169168ex 415 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
170118, 169syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
171 ffun 6510 . . . . . . . . . . . . . . . . . . . . . . . 24 ((card ∘ 𝑅1):On⟶On → Fun (card ∘ 𝑅1))
172124, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun (card ∘ 𝑅1)
173 resfunexg 6970 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (card ∘ 𝑅1) ∧ 𝑥 ∈ V) → ((card ∘ 𝑅1) ↾ 𝑥) ∈ V)
174172, 62, 173mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 ((card ∘ 𝑅1) ↾ 𝑥) ∈ V
175 feq1 6488 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤:𝑥𝐴 ↔ ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴))
176 fveq1 6662 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤𝑦) = (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
177176sseq2d 3997 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑧 ⊆ (𝑤𝑦) ↔ 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
178177rexbidv 3295 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∃𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
179178ralbidv 3195 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
180175, 179anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → ((𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) ↔ (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))))
181174, 180spcev 3605 . . . . . . . . . . . . . . . . . . . . 21 ((((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)))
182156, 170, 181syl6an 682 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦))))
1833ad2antrl 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝐴 ∈ On)
184 cfflb 9673 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
185183, 118, 184syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
186182, 185syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (cf‘𝐴) ⊆ 𝑥))
18749simp2bi 1140 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
188187sseq1d 3996 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Inacc → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
189188ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
190186, 189sylibd 241 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → 𝐴𝑥))
191 ontri1 6218 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
192183, 118, 191syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
193190, 192sylibd 241 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ¬ 𝑥𝐴))
194114, 193mt2d 138 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))
195 iunon 7968 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
19662, 195mpan 688 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
197160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (card‘(𝑅1𝑦)) ∈ On)
198196, 197mprg 3150 . . . . . . . . . . . . . . . . 17 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On
199 eqcom 2826 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
200 eloni 6194 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → Ord 𝑥)
201 eloni 6194 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → Ord 𝑦𝑥 (card‘(𝑅1𝑦)))
202 ordequn 6284 . . . . . . . . . . . . . . . . . . 19 ((Ord 𝑥 ∧ Ord 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
203200, 201, 202syl2an 597 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
204199, 203syl5bi 244 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
205118, 198, 204sylancl 588 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
206113, 194, 205mtord 875 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)
207 onelss 6226 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
208183, 114, 207sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
209 onelss 6226 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ On → ((card‘(𝑅1𝑦)) ∈ 𝐴 → (card‘(𝑅1𝑦)) ⊆ 𝐴))
210130, 142, 209sylsyld 61 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ⊆ 𝐴))
211210ralimdva 3175 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴))
212211impr 457 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
213 iunss 4960 . . . . . . . . . . . . . . . . . . . 20 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴 ↔ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
214212, 213sylibr 236 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
215208, 214unssd 4160 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴)
216 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑥 = if(𝑥 ∈ On, 𝑥, ∅))
217 iuneq1 4926 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑦𝑥 (card‘(𝑅1𝑦)) = 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)))
218216, 217uneq12d 4138 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))))
219218eleq1d 2895 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ↔ (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On))
220 0elon 6237 . . . . . . . . . . . . . . . . . . . . . . . 24 ∅ ∈ On
221220elimel 4532 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑥 ∈ On, 𝑥, ∅) ∈ On
222221elexi 3512 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 ∈ On, 𝑥, ∅) ∈ V
223 iunon 7968 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((if(𝑥 ∈ On, 𝑥, ∅) ∈ V ∧ ∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On) → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
224222, 223mpan 688 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
225160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ if(𝑥 ∈ On, 𝑥, ∅) → (card‘(𝑅1𝑦)) ∈ On)
226224, 225mprg 3150 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On
227221, 226onun2i 6299 . . . . . . . . . . . . . . . . . . . . . 22 (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On
228219, 227dedth 4521 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
229117, 228syl 17 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
230229adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ Lim 𝑥) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
2313adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)) → 𝐴 ∈ On)
232 onsseleq 6225 . . . . . . . . . . . . . . . . . . 19 (((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ∧ 𝐴 ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
233230, 231, 232syl2an 597 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
234215, 233mpbid 234 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴))
235234orcomd 867 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
236235ord 860 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
237206, 236mpd 15 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴)
238137ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (card‘𝐴) = 𝐴)
239 iscard 9396 . . . . . . . . . . . . . . . 16 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑧𝐴 𝑧𝐴))
240239simprbi 499 . . . . . . . . . . . . . . 15 ((card‘𝐴) = 𝐴 → ∀𝑧𝐴 𝑧𝐴)
241 breq1 5060 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 ↔ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
242241rspccv 3618 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 𝑧𝐴 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
243238, 240, 2423syl 18 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
244237, 243mpd 15 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴)
245 domsdomtr 8644 . . . . . . . . . . . . 13 (((𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴)
246107, 244, 245syl2anc 586 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≺ 𝐴)
247246exp43 439 . . . . . . . . . . 11 (𝑥𝐴 → (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴))))
248247com4l 92 . . . . . . . . . 10 (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴))))
24913, 17, 21, 28, 61, 248tfinds2 7570 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ Inacc → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴)))
250249impd 413 . . . . . . . 8 (𝑥 ∈ On → ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴))
2519, 250mpcom 38 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴)
252 sdomdom 8529 . . . . . . 7 ((𝑅1𝑥) ≺ 𝐴 → (𝑅1𝑥) ≼ 𝐴)
253251, 252syl 17 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≼ 𝐴)
254253ralrimiva 3180 . . . . 5 (𝐴 ∈ Inacc → ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴)
255 iundom 9956 . . . . 5 ((𝐴 ∈ On ∧ ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴) → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2563, 254, 255syl2anc 586 . . . 4 (𝐴 ∈ Inacc → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2577, 256eqbrtrd 5079 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ (𝐴 × 𝐴))
258 winainf 10108 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
2591, 258syl 17 . . . 4 (𝐴 ∈ Inacc → ω ⊆ 𝐴)
260 infxpen 9432 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2613, 259, 260syl2anc 586 . . 3 (𝐴 ∈ Inacc → (𝐴 × 𝐴) ≈ 𝐴)
262 domentr 8560 . . 3 (((𝑅1𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝑅1𝐴) ≼ 𝐴)
263257, 261, 262syl2anc 586 . 2 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ 𝐴)
264 fvex 6676 . . 3 (𝑅1𝐴) ∈ V
265122fdmi 6517 . . . . 5 dom 𝑅1 = On
2662, 265eleqtrrdi 2922 . . . 4 (𝐴 ∈ Inaccw𝐴 ∈ dom 𝑅1)
267 onssr1 9252 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2681, 266, 2673syl 18 . . 3 (𝐴 ∈ Inacc → 𝐴 ⊆ (𝑅1𝐴))
269 ssdomg 8547 . . 3 ((𝑅1𝐴) ∈ V → (𝐴 ⊆ (𝑅1𝐴) → 𝐴 ≼ (𝑅1𝐴)))
270264, 268, 269mpsyl 68 . 2 (𝐴 ∈ Inacc → 𝐴 ≼ (𝑅1𝐴))
271 sbth 8629 . 2 (((𝑅1𝐴) ≼ 𝐴𝐴 ≼ (𝑅1𝐴)) → (𝑅1𝐴) ≈ 𝐴)
272263, 270, 271syl2anc 586 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1530  wex 1773  wcel 2107  wne 3014  wral 3136  wrex 3137  Vcvv 3493  cun 3932  wss 3934  c0 4289  ifcif 4465  𝒫 cpw 4537   ciun 4910   class class class wbr 5057  Tr wtr 5163   × cxp 5546  dom cdm 5548  cres 5550  ccom 5552  Ord word 6183  Oncon0 6184  Lim wlim 6185  suc csuc 6186  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  ωcom 7572  cen 8498  cdom 8499  csdm 8500  𝑅1cr1 9183  cardccrd 9356  cfccf 9358  Inaccwcwina 10096  Inacccina 10097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-ac2 9877
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-oi 8966  df-r1 9185  df-rank 9186  df-card 9360  df-cf 9362  df-acn 9363  df-ac 9534  df-wina 10098  df-ina 10099
This theorem is referenced by:  r1omALT  10190  inatsk  10192
  Copyright terms: Public domain W3C validator