MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inar1 Structured version   Visualization version   GIF version

Theorem inar1 10200
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is equipotent to 𝐴. (Contributed by Mario Carneiro, 6-Jun-2013.)
Assertion
Ref Expression
inar1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)

Proof of Theorem inar1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10115 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 10113 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
31, 2syl 17 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ On)
4 winalim 10120 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
51, 4syl 17 . . . . 5 (𝐴 ∈ Inacc → Lim 𝐴)
6 r1lim 9204 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
73, 5, 6syl2anc 586 . . . 4 (𝐴 ∈ Inacc → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
8 onelon 6219 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
93, 8sylan 582 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 eleq1 2903 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
11 fveq2 6673 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1211breq1d 5079 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘∅) ≺ 𝐴))
1310, 12imbi12d 347 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴)))
14 eleq1 2903 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
15 fveq2 6673 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
1615breq1d 5079 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
1714, 16imbi12d 347 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)))
18 eleq1 2903 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
19 fveq2 6673 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2019breq1d 5079 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘suc 𝑦) ≺ 𝐴))
2118, 20imbi12d 347 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
22 ne0i 4303 . . . . . . . . . . . . 13 (∅ ∈ 𝐴𝐴 ≠ ∅)
23 0sdomg 8649 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ≺ 𝐴𝐴 ≠ ∅))
2422, 23syl5ibr 248 . . . . . . . . . . . 12 (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ≺ 𝐴))
25 r10 9200 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
2625breq1i 5076 . . . . . . . . . . . 12 ((𝑅1‘∅) ≺ 𝐴 ↔ ∅ ≺ 𝐴)
2724, 26syl6ibr 254 . . . . . . . . . . 11 (𝐴 ∈ On → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
281, 2, 273syl 18 . . . . . . . . . 10 (𝐴 ∈ Inacc → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
29 eloni 6204 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Ord 𝐴)
30 ordtr 6208 . . . . . . . . . . . . . . 15 (Ord 𝐴 → Tr 𝐴)
3129, 30syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Tr 𝐴)
32 trsuc 6278 . . . . . . . . . . . . . . 15 ((Tr 𝐴 ∧ suc 𝑦𝐴) → 𝑦𝐴)
3332ex 415 . . . . . . . . . . . . . 14 (Tr 𝐴 → (suc 𝑦𝐴𝑦𝐴))
343, 31, 333syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc → (suc 𝑦𝐴𝑦𝐴))
3534adantl 484 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → (suc 𝑦𝐴𝑦𝐴))
36 r1suc 9202 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37 fvex 6686 . . . . . . . . . . . . . . . . . 18 (𝑅1𝑦) ∈ V
3837cardid 9972 . . . . . . . . . . . . . . . . 17 (card‘(𝑅1𝑦)) ≈ (𝑅1𝑦)
3938ensymi 8562 . . . . . . . . . . . . . . . 16 (𝑅1𝑦) ≈ (card‘(𝑅1𝑦))
40 pwen 8693 . . . . . . . . . . . . . . . 16 ((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) → 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
4139, 40ax-mp 5 . . . . . . . . . . . . . . 15 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦))
4236, 41eqbrtrdi 5108 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
43 winacard 10117 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
4443eleq2d 2901 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
45 cardsdom 9980 . . . . . . . . . . . . . . . . . . 19 (((𝑅1𝑦) ∈ V ∧ 𝐴 ∈ On) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4637, 2, 45sylancr 589 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4744, 46bitr3d 283 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
49 elina 10112 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴 𝒫 𝑧𝐴))
5049simp3bi 1143 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inacc → ∀𝑧𝐴 𝒫 𝑧𝐴)
51 pweq 4558 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (card‘(𝑅1𝑦)) → 𝒫 𝑧 = 𝒫 (card‘(𝑅1𝑦)))
5251breq1d 5079 . . . . . . . . . . . . . . . . . 18 (𝑧 = (card‘(𝑅1𝑦)) → (𝒫 𝑧𝐴 ↔ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5352rspccv 3623 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴 𝒫 𝑧𝐴 → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5450, 53syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5548, 54sylbird 262 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inacc → ((𝑅1𝑦) ≺ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5655imp 409 . . . . . . . . . . . . . 14 ((𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴) → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴)
57 ensdomtr 8656 . . . . . . . . . . . . . 14 (((𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)) ∧ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5842, 56, 57syl2an 597 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴)) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5958expr 459 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑅1𝑦) ≺ 𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))
6035, 59imim12d 81 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
6160ex 415 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴 ∈ Inacc → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))))
62 vex 3500 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
63 r1lim 9204 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
6462, 63mpan 688 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
65 nfcv 2980 . . . . . . . . . . . . . . . . . . 19 𝑦𝑧
66 nfcv 2980 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑅1𝑧)
67 nfcv 2980 . . . . . . . . . . . . . . . . . . . 20 𝑦
68 nfiu1 4956 . . . . . . . . . . . . . . . . . . . 20 𝑦 𝑦𝑥 (card‘(𝑅1𝑦))
6966, 67, 68nfbr 5116 . . . . . . . . . . . . . . . . . . 19 𝑦(𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
70 fveq2 6673 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑅1𝑦) = (𝑅1𝑧))
7170breq1d 5079 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
72 fvex 6686 . . . . . . . . . . . . . . . . . . . . . 22 (card‘(𝑅1𝑦)) ∈ V
7362, 72iunex 7672 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V
74 ssiun2 4974 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥 → (card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)))
75 ssdomg 8558 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V → ((card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)) → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
7673, 74, 75mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥 → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
77 endomtr 8570 . . . . . . . . . . . . . . . . . . . 20 (((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) ∧ (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7839, 76, 77sylancr 589 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7965, 69, 71, 78vtoclgaf 3576 . . . . . . . . . . . . . . . . . 18 (𝑧𝑥 → (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
8079rgen 3151 . . . . . . . . . . . . . . . . 17 𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
81 iundom 9967 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ ∀𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))))
8262, 80, 81mp2an 690 . . . . . . . . . . . . . . . 16 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦)))
8362, 73unex 7472 . . . . . . . . . . . . . . . . . . . 20 (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V
84 ssun2 4152 . . . . . . . . . . . . . . . . . . . 20 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
85 ssdomg 8558 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8683, 84, 85mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
8762xpdom2 8615 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8886, 87ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
89 ssun1 4151 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
90 ssdomg 8558 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9183, 89, 90mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
9283xpdom1 8619 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
94 domtr 8565 . . . . . . . . . . . . . . . . . 18 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9588, 93, 94mp2an 690 . . . . . . . . . . . . . . . . 17 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
96 limomss 7588 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → ω ⊆ 𝑥)
9796, 89sstrdi 3982 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
98 ssdomg 8558 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9983, 97, 98mpsyl 68 . . . . . . . . . . . . . . . . . 18 (Lim 𝑥 → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
100 infxpidm 9987 . . . . . . . . . . . . . . . . . 18 (ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
102 domentr 8571 . . . . . . . . . . . . . . . . 17 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10395, 101, 102sylancr 589 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
104 domtr 8565 . . . . . . . . . . . . . . . 16 (( 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10582, 103, 104sylancr 589 . . . . . . . . . . . . . . 15 (Lim 𝑥 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10664, 105eqbrtrd 5091 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
107106ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
108 eleq1a 2911 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 = 𝑥𝐴𝐴))
109 ordirr 6212 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴 → ¬ 𝐴𝐴)
1103, 29, 1093syl 18 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inacc → ¬ 𝐴𝐴)
111108, 110nsyli 160 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥))
112111imp 409 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐴 ∈ Inacc) → ¬ 𝐴 = 𝑥)
113112ad2ant2r 745 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑥)
114 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
115 limord 6253 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
11662elon 6203 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On ↔ Ord 𝑥)
117115, 116sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑥𝑥 ∈ On)
118117ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥 ∈ On)
119 cardf 9975 . . . . . . . . . . . . . . . . . . . . . . . . 25 card:V⟶On
120 r1fnon 9199 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑅1 Fn On
121 dffn2 6519 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
122120, 121mpbi 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑅1:On⟶V
123 fco 6534 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((card:V⟶On ∧ 𝑅1:On⟶V) → (card ∘ 𝑅1):On⟶On)
124119, 122, 123mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (card ∘ 𝑅1):On⟶On
125 onss 7508 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → 𝑥 ⊆ On)
126 fssres 6547 . . . . . . . . . . . . . . . . . . . . . . . 24 (((card ∘ 𝑅1):On⟶On ∧ 𝑥 ⊆ On) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
127124, 125, 126sylancr 589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
128 ffn 6517 . . . . . . . . . . . . . . . . . . . . . . 23 (((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
129118, 127, 1283syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
1303ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝐴 ∈ On)
131 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝑥)
132 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑥𝐴)
133 ontr1 6240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
134133imp 409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ (𝑦𝑥𝑥𝐴)) → 𝑦𝐴)
135130, 131, 132, 134syl12anc 834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝐴)
13637, 130, 45sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
1371, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐴 ∈ Inacc → (card‘𝐴) = 𝐴)
138137ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (card‘𝐴) = 𝐴)
139138eleq2d 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
140136, 139bitr3d 283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
141140biimpd 231 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 → (card‘(𝑅1𝑦)) ∈ 𝐴))
142135, 141embantd 59 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ∈ 𝐴))
143117ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → 𝑥 ∈ On)
144 fvres 6692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝑥 → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
145144adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
146 onelon 6219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
147 fvco3 6763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅1:On⟶V ∧ 𝑦 ∈ On) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
148122, 146, 147sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
149145, 148eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
150143, 149sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
151150eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
152142, 151sylibrd 261 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
153152ralimdva 3180 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
154153impr 457 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴)
155 ffnfv 6885 . . . . . . . . . . . . . . . . . . . . . 22 (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ↔ (((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
156129, 154, 155sylanbrc 585 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴)
157 eleq2 2904 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (𝑧𝐴𝑧 𝑦𝑥 (card‘(𝑅1𝑦))))
158157biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → 𝑧 𝑦𝑥 (card‘(𝑅1𝑦)))
159 eliun 4926 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ ∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)))
160 cardon 9376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (card‘(𝑅1𝑦)) ∈ On
161160onelssi 6302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (card‘(𝑅1𝑦)))
162149sseq2d 4002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ↔ 𝑧 ⊆ (card‘(𝑅1𝑦))))
163161, 162syl5ibr 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
164163reximdva 3277 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ On → (∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
165159, 164syl5bi 244 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
166158, 165syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
167166expdimp 455 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
168167ralrimiv 3184 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
169168ex 415 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
170118, 169syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
171 ffun 6520 . . . . . . . . . . . . . . . . . . . . . . . 24 ((card ∘ 𝑅1):On⟶On → Fun (card ∘ 𝑅1))
172124, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun (card ∘ 𝑅1)
173 resfunexg 6981 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (card ∘ 𝑅1) ∧ 𝑥 ∈ V) → ((card ∘ 𝑅1) ↾ 𝑥) ∈ V)
174172, 62, 173mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 ((card ∘ 𝑅1) ↾ 𝑥) ∈ V
175 feq1 6498 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤:𝑥𝐴 ↔ ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴))
176 fveq1 6672 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤𝑦) = (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
177176sseq2d 4002 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑧 ⊆ (𝑤𝑦) ↔ 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
178177rexbidv 3300 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∃𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
179178ralbidv 3200 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
180175, 179anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → ((𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) ↔ (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))))
181174, 180spcev 3610 . . . . . . . . . . . . . . . . . . . . 21 ((((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)))
182156, 170, 181syl6an 682 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦))))
1833ad2antrl 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝐴 ∈ On)
184 cfflb 9684 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
185183, 118, 184syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
186182, 185syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (cf‘𝐴) ⊆ 𝑥))
18749simp2bi 1142 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
188187sseq1d 4001 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Inacc → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
189188ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
190186, 189sylibd 241 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → 𝐴𝑥))
191 ontri1 6228 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
192183, 118, 191syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
193190, 192sylibd 241 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ¬ 𝑥𝐴))
194114, 193mt2d 138 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))
195 iunon 7979 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
19662, 195mpan 688 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
197160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (card‘(𝑅1𝑦)) ∈ On)
198196, 197mprg 3155 . . . . . . . . . . . . . . . . 17 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On
199 eqcom 2831 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
200 eloni 6204 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → Ord 𝑥)
201 eloni 6204 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → Ord 𝑦𝑥 (card‘(𝑅1𝑦)))
202 ordequn 6294 . . . . . . . . . . . . . . . . . . 19 ((Ord 𝑥 ∧ Ord 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
203200, 201, 202syl2an 597 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
204199, 203syl5bi 244 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
205118, 198, 204sylancl 588 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
206113, 194, 205mtord 876 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)
207 onelss 6236 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
208183, 114, 207sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
209 onelss 6236 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ On → ((card‘(𝑅1𝑦)) ∈ 𝐴 → (card‘(𝑅1𝑦)) ⊆ 𝐴))
210130, 142, 209sylsyld 61 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ⊆ 𝐴))
211210ralimdva 3180 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴))
212211impr 457 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
213 iunss 4972 . . . . . . . . . . . . . . . . . . . 20 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴 ↔ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
214212, 213sylibr 236 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
215208, 214unssd 4165 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴)
216 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑥 = if(𝑥 ∈ On, 𝑥, ∅))
217 iuneq1 4938 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑦𝑥 (card‘(𝑅1𝑦)) = 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)))
218216, 217uneq12d 4143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))))
219218eleq1d 2900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ↔ (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On))
220 0elon 6247 . . . . . . . . . . . . . . . . . . . . . . . 24 ∅ ∈ On
221220elimel 4537 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑥 ∈ On, 𝑥, ∅) ∈ On
222221elexi 3516 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 ∈ On, 𝑥, ∅) ∈ V
223 iunon 7979 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((if(𝑥 ∈ On, 𝑥, ∅) ∈ V ∧ ∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On) → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
224222, 223mpan 688 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
225160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ if(𝑥 ∈ On, 𝑥, ∅) → (card‘(𝑅1𝑦)) ∈ On)
226224, 225mprg 3155 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On
227221, 226onun2i 6309 . . . . . . . . . . . . . . . . . . . . . 22 (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On
228219, 227dedth 4526 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
229117, 228syl 17 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
230229adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ Lim 𝑥) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
2313adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)) → 𝐴 ∈ On)
232 onsseleq 6235 . . . . . . . . . . . . . . . . . . 19 (((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ∧ 𝐴 ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
233230, 231, 232syl2an 597 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
234215, 233mpbid 234 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴))
235234orcomd 867 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
236235ord 860 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
237206, 236mpd 15 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴)
238137ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (card‘𝐴) = 𝐴)
239 iscard 9407 . . . . . . . . . . . . . . . 16 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑧𝐴 𝑧𝐴))
240239simprbi 499 . . . . . . . . . . . . . . 15 ((card‘𝐴) = 𝐴 → ∀𝑧𝐴 𝑧𝐴)
241 breq1 5072 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 ↔ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
242241rspccv 3623 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 𝑧𝐴 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
243238, 240, 2423syl 18 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
244237, 243mpd 15 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴)
245 domsdomtr 8655 . . . . . . . . . . . . 13 (((𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴)
246107, 244, 245syl2anc 586 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≺ 𝐴)
247246exp43 439 . . . . . . . . . . 11 (𝑥𝐴 → (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴))))
248247com4l 92 . . . . . . . . . 10 (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴))))
24913, 17, 21, 28, 61, 248tfinds2 7581 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ Inacc → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴)))
250249impd 413 . . . . . . . 8 (𝑥 ∈ On → ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴))
2519, 250mpcom 38 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴)
252 sdomdom 8540 . . . . . . 7 ((𝑅1𝑥) ≺ 𝐴 → (𝑅1𝑥) ≼ 𝐴)
253251, 252syl 17 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≼ 𝐴)
254253ralrimiva 3185 . . . . 5 (𝐴 ∈ Inacc → ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴)
255 iundom 9967 . . . . 5 ((𝐴 ∈ On ∧ ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴) → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2563, 254, 255syl2anc 586 . . . 4 (𝐴 ∈ Inacc → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2577, 256eqbrtrd 5091 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ (𝐴 × 𝐴))
258 winainf 10119 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
2591, 258syl 17 . . . 4 (𝐴 ∈ Inacc → ω ⊆ 𝐴)
260 infxpen 9443 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2613, 259, 260syl2anc 586 . . 3 (𝐴 ∈ Inacc → (𝐴 × 𝐴) ≈ 𝐴)
262 domentr 8571 . . 3 (((𝑅1𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝑅1𝐴) ≼ 𝐴)
263257, 261, 262syl2anc 586 . 2 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ 𝐴)
264 fvex 6686 . . 3 (𝑅1𝐴) ∈ V
265122fdmi 6527 . . . . 5 dom 𝑅1 = On
2662, 265eleqtrrdi 2927 . . . 4 (𝐴 ∈ Inaccw𝐴 ∈ dom 𝑅1)
267 onssr1 9263 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2681, 266, 2673syl 18 . . 3 (𝐴 ∈ Inacc → 𝐴 ⊆ (𝑅1𝐴))
269 ssdomg 8558 . . 3 ((𝑅1𝐴) ∈ V → (𝐴 ⊆ (𝑅1𝐴) → 𝐴 ≼ (𝑅1𝐴)))
270264, 268, 269mpsyl 68 . 2 (𝐴 ∈ Inacc → 𝐴 ≼ (𝑅1𝐴))
271 sbth 8640 . 2 (((𝑅1𝐴) ≼ 𝐴𝐴 ≼ (𝑅1𝐴)) → (𝑅1𝐴) ≈ 𝐴)
272263, 270, 271syl2anc 586 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wex 1779  wcel 2113  wne 3019  wral 3141  wrex 3142  Vcvv 3497  cun 3937  wss 3939  c0 4294  ifcif 4470  𝒫 cpw 4542   ciun 4922   class class class wbr 5069  Tr wtr 5175   × cxp 5556  dom cdm 5558  cres 5560  ccom 5562  Ord word 6193  Oncon0 6194  Lim wlim 6195  suc csuc 6196  Fun wfun 6352   Fn wfn 6353  wf 6354  cfv 6358  ωcom 7583  cen 8509  cdom 8510  csdm 8511  𝑅1cr1 9194  cardccrd 9367  cfccf 9369  Inaccwcwina 10107  Inacccina 10108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-ac2 9888
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-oi 8977  df-r1 9196  df-rank 9197  df-card 9371  df-cf 9373  df-acn 9374  df-ac 9545  df-wina 10109  df-ina 10110
This theorem is referenced by:  r1omALT  10201  inatsk  10203
  Copyright terms: Public domain W3C validator