MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inar1 Structured version   Visualization version   GIF version

Theorem inar1 10804
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is equipotent to 𝐴. (Contributed by Mario Carneiro, 6-Jun-2013.)
Assertion
Ref Expression
inar1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)

Proof of Theorem inar1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10719 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 10717 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
31, 2syl 17 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ On)
4 winalim 10724 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
51, 4syl 17 . . . . 5 (𝐴 ∈ Inacc → Lim 𝐴)
6 r1lim 9801 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
73, 5, 6syl2anc 582 . . . 4 (𝐴 ∈ Inacc → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
8 onelon 6397 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
93, 8sylan 578 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 eleq1 2816 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
11 fveq2 6900 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1211breq1d 5160 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘∅) ≺ 𝐴))
1310, 12imbi12d 343 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴)))
14 eleq1 2816 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
15 fveq2 6900 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
1615breq1d 5160 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
1714, 16imbi12d 343 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)))
18 eleq1 2816 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
19 fveq2 6900 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2019breq1d 5160 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘suc 𝑦) ≺ 𝐴))
2118, 20imbi12d 343 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
22 ne0i 4336 . . . . . . . . . . . . 13 (∅ ∈ 𝐴𝐴 ≠ ∅)
23 0sdomg 9133 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ≺ 𝐴𝐴 ≠ ∅))
2422, 23imbitrrid 245 . . . . . . . . . . . 12 (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ≺ 𝐴))
25 r10 9797 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
2625breq1i 5157 . . . . . . . . . . . 12 ((𝑅1‘∅) ≺ 𝐴 ↔ ∅ ≺ 𝐴)
2724, 26imbitrrdi 251 . . . . . . . . . . 11 (𝐴 ∈ On → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
281, 2, 273syl 18 . . . . . . . . . 10 (𝐴 ∈ Inacc → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
29 eloni 6382 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Ord 𝐴)
30 ordtr 6386 . . . . . . . . . . . . . . 15 (Ord 𝐴 → Tr 𝐴)
3129, 30syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Tr 𝐴)
32 trsuc 6459 . . . . . . . . . . . . . . 15 ((Tr 𝐴 ∧ suc 𝑦𝐴) → 𝑦𝐴)
3332ex 411 . . . . . . . . . . . . . 14 (Tr 𝐴 → (suc 𝑦𝐴𝑦𝐴))
343, 31, 333syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc → (suc 𝑦𝐴𝑦𝐴))
3534adantl 480 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → (suc 𝑦𝐴𝑦𝐴))
36 r1suc 9799 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37 fvex 6913 . . . . . . . . . . . . . . . . . 18 (𝑅1𝑦) ∈ V
3837cardid 10576 . . . . . . . . . . . . . . . . 17 (card‘(𝑅1𝑦)) ≈ (𝑅1𝑦)
3938ensymi 9029 . . . . . . . . . . . . . . . 16 (𝑅1𝑦) ≈ (card‘(𝑅1𝑦))
40 pwen 9179 . . . . . . . . . . . . . . . 16 ((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) → 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
4139, 40ax-mp 5 . . . . . . . . . . . . . . 15 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦))
4236, 41eqbrtrdi 5189 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
43 winacard 10721 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
4443eleq2d 2814 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
45 cardsdom 10584 . . . . . . . . . . . . . . . . . . 19 (((𝑅1𝑦) ∈ V ∧ 𝐴 ∈ On) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4637, 2, 45sylancr 585 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4744, 46bitr3d 280 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
49 elina 10716 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴 𝒫 𝑧𝐴))
5049simp3bi 1144 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inacc → ∀𝑧𝐴 𝒫 𝑧𝐴)
51 pweq 4618 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (card‘(𝑅1𝑦)) → 𝒫 𝑧 = 𝒫 (card‘(𝑅1𝑦)))
5251breq1d 5160 . . . . . . . . . . . . . . . . . 18 (𝑧 = (card‘(𝑅1𝑦)) → (𝒫 𝑧𝐴 ↔ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5352rspccv 3606 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴 𝒫 𝑧𝐴 → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5450, 53syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5548, 54sylbird 259 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inacc → ((𝑅1𝑦) ≺ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5655imp 405 . . . . . . . . . . . . . 14 ((𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴) → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴)
57 ensdomtr 9142 . . . . . . . . . . . . . 14 (((𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)) ∧ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5842, 56, 57syl2an 594 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴)) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5958expr 455 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑅1𝑦) ≺ 𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))
6035, 59imim12d 81 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
6160ex 411 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴 ∈ Inacc → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))))
62 vex 3475 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
63 r1lim 9801 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
6462, 63mpan 688 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
65 nfcv 2898 . . . . . . . . . . . . . . . . . . 19 𝑦𝑧
66 nfcv 2898 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑅1𝑧)
67 nfcv 2898 . . . . . . . . . . . . . . . . . . . 20 𝑦
68 nfiu1 5032 . . . . . . . . . . . . . . . . . . . 20 𝑦 𝑦𝑥 (card‘(𝑅1𝑦))
6966, 67, 68nfbr 5197 . . . . . . . . . . . . . . . . . . 19 𝑦(𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
70 fveq2 6900 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑅1𝑦) = (𝑅1𝑧))
7170breq1d 5160 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
72 fvex 6913 . . . . . . . . . . . . . . . . . . . . . 22 (card‘(𝑅1𝑦)) ∈ V
7362, 72iunex 7976 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V
74 ssiun2 5052 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥 → (card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)))
75 ssdomg 9025 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V → ((card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)) → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
7673, 74, 75mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥 → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
77 endomtr 9037 . . . . . . . . . . . . . . . . . . . 20 (((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) ∧ (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7839, 76, 77sylancr 585 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7965, 69, 71, 78vtoclgaf 3562 . . . . . . . . . . . . . . . . . 18 (𝑧𝑥 → (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
8079rgen 3059 . . . . . . . . . . . . . . . . 17 𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
81 iundom 10571 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ ∀𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))))
8262, 80, 81mp2an 690 . . . . . . . . . . . . . . . 16 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦)))
8362, 73unex 7752 . . . . . . . . . . . . . . . . . . . 20 (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V
84 ssun2 4173 . . . . . . . . . . . . . . . . . . . 20 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
85 ssdomg 9025 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8683, 84, 85mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
8762xpdom2 9096 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8886, 87ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
89 ssun1 4172 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
90 ssdomg 9025 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9183, 89, 90mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
9283xpdom1 9100 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
94 domtr 9032 . . . . . . . . . . . . . . . . . 18 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9588, 93, 94mp2an 690 . . . . . . . . . . . . . . . . 17 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
96 limomss 7879 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → ω ⊆ 𝑥)
9796, 89sstrdi 3992 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
98 ssdomg 9025 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9983, 97, 98mpsyl 68 . . . . . . . . . . . . . . . . . 18 (Lim 𝑥 → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
100 infxpidm 10591 . . . . . . . . . . . . . . . . . 18 (ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
102 domentr 9038 . . . . . . . . . . . . . . . . 17 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10395, 101, 102sylancr 585 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
104 domtr 9032 . . . . . . . . . . . . . . . 16 (( 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10582, 103, 104sylancr 585 . . . . . . . . . . . . . . 15 (Lim 𝑥 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10664, 105eqbrtrd 5172 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
107106ad2antlr 725 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
108 eleq1a 2823 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 = 𝑥𝐴𝐴))
109 ordirr 6390 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴 → ¬ 𝐴𝐴)
1103, 29, 1093syl 18 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inacc → ¬ 𝐴𝐴)
111108, 110nsyli 157 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥))
112111imp 405 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐴 ∈ Inacc) → ¬ 𝐴 = 𝑥)
113112ad2ant2r 745 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑥)
114 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
115 limord 6432 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
11662elon 6381 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On ↔ Ord 𝑥)
117115, 116sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑥𝑥 ∈ On)
118117ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥 ∈ On)
119 cardf 10579 . . . . . . . . . . . . . . . . . . . . . . . . 25 card:V⟶On
120 r1fnon 9796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑅1 Fn On
121 dffn2 6727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
122120, 121mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑅1:On⟶V
123 fco 6750 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((card:V⟶On ∧ 𝑅1:On⟶V) → (card ∘ 𝑅1):On⟶On)
124119, 122, 123mp2an 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (card ∘ 𝑅1):On⟶On
125 onss 7791 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → 𝑥 ⊆ On)
126 fssres 6766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((card ∘ 𝑅1):On⟶On ∧ 𝑥 ⊆ On) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
127124, 125, 126sylancr 585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
128 ffn 6725 . . . . . . . . . . . . . . . . . . . . . . 23 (((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
129118, 127, 1283syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
1303ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝐴 ∈ On)
131 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝑥)
132 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑥𝐴)
133 ontr1 6418 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
134133imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ (𝑦𝑥𝑥𝐴)) → 𝑦𝐴)
135130, 131, 132, 134syl12anc 835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝐴)
13637, 130, 45sylancr 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
1371, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐴 ∈ Inacc → (card‘𝐴) = 𝐴)
138137ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (card‘𝐴) = 𝐴)
139138eleq2d 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
140136, 139bitr3d 280 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
141140biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 → (card‘(𝑅1𝑦)) ∈ 𝐴))
142135, 141embantd 59 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ∈ 𝐴))
143117ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → 𝑥 ∈ On)
144 fvres 6919 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝑥 → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
145144adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
146 onelon 6397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
147 fvco3 7000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅1:On⟶V ∧ 𝑦 ∈ On) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
148122, 146, 147sylancr 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
149145, 148eqtrd 2767 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
150143, 149sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
151150eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
152142, 151sylibrd 258 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
153152ralimdva 3163 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
154153impr 453 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴)
155 ffnfv 7132 . . . . . . . . . . . . . . . . . . . . . 22 (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ↔ (((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
156129, 154, 155sylanbrc 581 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴)
157 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (𝑧𝐴𝑧 𝑦𝑥 (card‘(𝑅1𝑦))))
158157biimpa 475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → 𝑧 𝑦𝑥 (card‘(𝑅1𝑦)))
159 eliun 5002 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ ∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)))
160 cardon 9973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (card‘(𝑅1𝑦)) ∈ On
161160onelssi 6487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (card‘(𝑅1𝑦)))
162149sseq2d 4012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ↔ 𝑧 ⊆ (card‘(𝑅1𝑦))))
163161, 162imbitrrid 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
164163reximdva 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ On → (∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
165159, 164biimtrid 241 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
166158, 165syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
167166expdimp 451 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
168167ralrimiv 3141 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
169168ex 411 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
170118, 169syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
171 ffun 6728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((card ∘ 𝑅1):On⟶On → Fun (card ∘ 𝑅1))
172124, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun (card ∘ 𝑅1)
173 resfunexg 7231 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (card ∘ 𝑅1) ∧ 𝑥 ∈ V) → ((card ∘ 𝑅1) ↾ 𝑥) ∈ V)
174172, 62, 173mp2an 690 . . . . . . . . . . . . . . . . . . . . . 22 ((card ∘ 𝑅1) ↾ 𝑥) ∈ V
175 feq1 6706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤:𝑥𝐴 ↔ ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴))
176 fveq1 6899 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤𝑦) = (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
177176sseq2d 4012 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑧 ⊆ (𝑤𝑦) ↔ 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
178177rexbidv 3174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∃𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
179178ralbidv 3173 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
180175, 179anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → ((𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) ↔ (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))))
181174, 180spcev 3593 . . . . . . . . . . . . . . . . . . . . 21 ((((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)))
182156, 170, 181syl6an 682 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦))))
1833ad2antrl 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝐴 ∈ On)
184 cfflb 10288 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
185183, 118, 184syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
186182, 185syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (cf‘𝐴) ⊆ 𝑥))
18749simp2bi 1143 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
188187sseq1d 4011 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Inacc → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
189188ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
190186, 189sylibd 238 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → 𝐴𝑥))
191 ontri1 6406 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
192183, 118, 191syl2anc 582 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
193190, 192sylibd 238 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ¬ 𝑥𝐴))
194114, 193mt2d 136 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))
195 iunon 8364 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
19662, 195mpan 688 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
197160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (card‘(𝑅1𝑦)) ∈ On)
198196, 197mprg 3063 . . . . . . . . . . . . . . . . 17 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On
199 eqcom 2734 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
200 eloni 6382 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → Ord 𝑥)
201 eloni 6382 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → Ord 𝑦𝑥 (card‘(𝑅1𝑦)))
202 ordequn 6475 . . . . . . . . . . . . . . . . . . 19 ((Ord 𝑥 ∧ Ord 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
203200, 201, 202syl2an 594 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
204199, 203biimtrid 241 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
205118, 198, 204sylancl 584 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
206113, 194, 205mtord 877 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)
207 onelss 6414 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
208183, 114, 207sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
209 onelss 6414 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ On → ((card‘(𝑅1𝑦)) ∈ 𝐴 → (card‘(𝑅1𝑦)) ⊆ 𝐴))
210130, 142, 209sylsyld 61 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ⊆ 𝐴))
211210ralimdva 3163 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴))
212211impr 453 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
213 iunss 5050 . . . . . . . . . . . . . . . . . . . 20 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴 ↔ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
214212, 213sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
215208, 214unssd 4186 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴)
216 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑥 = if(𝑥 ∈ On, 𝑥, ∅))
217 iuneq1 5014 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑦𝑥 (card‘(𝑅1𝑦)) = 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)))
218216, 217uneq12d 4163 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))))
219218eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ↔ (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On))
220 0elon 6426 . . . . . . . . . . . . . . . . . . . . . . . 24 ∅ ∈ On
221220elimel 4599 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑥 ∈ On, 𝑥, ∅) ∈ On
222221elexi 3491 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 ∈ On, 𝑥, ∅) ∈ V
223 iunon 8364 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((if(𝑥 ∈ On, 𝑥, ∅) ∈ V ∧ ∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On) → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
224222, 223mpan 688 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
225160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ if(𝑥 ∈ On, 𝑥, ∅) → (card‘(𝑅1𝑦)) ∈ On)
226224, 225mprg 3063 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On
227221, 226onun2i 6494 . . . . . . . . . . . . . . . . . . . . . 22 (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On
228219, 227dedth 4588 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
229117, 228syl 17 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
230229adantl 480 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ Lim 𝑥) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
2313adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)) → 𝐴 ∈ On)
232 onsseleq 6413 . . . . . . . . . . . . . . . . . . 19 (((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ∧ 𝐴 ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
233230, 231, 232syl2an 594 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
234215, 233mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴))
235234orcomd 869 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
236235ord 862 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
237206, 236mpd 15 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴)
238137ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (card‘𝐴) = 𝐴)
239 iscard 10004 . . . . . . . . . . . . . . . 16 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑧𝐴 𝑧𝐴))
240239simprbi 495 . . . . . . . . . . . . . . 15 ((card‘𝐴) = 𝐴 → ∀𝑧𝐴 𝑧𝐴)
241 breq1 5153 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 ↔ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
242241rspccv 3606 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 𝑧𝐴 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
243238, 240, 2423syl 18 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
244237, 243mpd 15 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴)
245 domsdomtr 9141 . . . . . . . . . . . . 13 (((𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴)
246107, 244, 245syl2anc 582 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≺ 𝐴)
247246exp43 435 . . . . . . . . . . 11 (𝑥𝐴 → (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴))))
248247com4l 92 . . . . . . . . . 10 (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴))))
24913, 17, 21, 28, 61, 248tfinds2 7872 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ Inacc → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴)))
250249impd 409 . . . . . . . 8 (𝑥 ∈ On → ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴))
2519, 250mpcom 38 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴)
252 sdomdom 9005 . . . . . . 7 ((𝑅1𝑥) ≺ 𝐴 → (𝑅1𝑥) ≼ 𝐴)
253251, 252syl 17 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≼ 𝐴)
254253ralrimiva 3142 . . . . 5 (𝐴 ∈ Inacc → ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴)
255 iundom 10571 . . . . 5 ((𝐴 ∈ On ∧ ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴) → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2563, 254, 255syl2anc 582 . . . 4 (𝐴 ∈ Inacc → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2577, 256eqbrtrd 5172 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ (𝐴 × 𝐴))
258 winainf 10723 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
2591, 258syl 17 . . . 4 (𝐴 ∈ Inacc → ω ⊆ 𝐴)
260 infxpen 10043 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2613, 259, 260syl2anc 582 . . 3 (𝐴 ∈ Inacc → (𝐴 × 𝐴) ≈ 𝐴)
262 domentr 9038 . . 3 (((𝑅1𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝑅1𝐴) ≼ 𝐴)
263257, 261, 262syl2anc 582 . 2 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ 𝐴)
264 fvex 6913 . . 3 (𝑅1𝐴) ∈ V
265122fdmi 6737 . . . . 5 dom 𝑅1 = On
2662, 265eleqtrrdi 2839 . . . 4 (𝐴 ∈ Inaccw𝐴 ∈ dom 𝑅1)
267 onssr1 9860 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2681, 266, 2673syl 18 . . 3 (𝐴 ∈ Inacc → 𝐴 ⊆ (𝑅1𝐴))
269 ssdomg 9025 . . 3 ((𝑅1𝐴) ∈ V → (𝐴 ⊆ (𝑅1𝐴) → 𝐴 ≼ (𝑅1𝐴)))
270264, 268, 269mpsyl 68 . 2 (𝐴 ∈ Inacc → 𝐴 ≼ (𝑅1𝐴))
271 sbth 9122 . 2 (((𝑅1𝐴) ≼ 𝐴𝐴 ≼ (𝑅1𝐴)) → (𝑅1𝐴) ≈ 𝐴)
272263, 270, 271syl2anc 582 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wex 1773  wcel 2098  wne 2936  wral 3057  wrex 3066  Vcvv 3471  cun 3945  wss 3947  c0 4324  ifcif 4530  𝒫 cpw 4604   ciun 4998   class class class wbr 5150  Tr wtr 5267   × cxp 5678  dom cdm 5680  cres 5682  ccom 5684  Ord word 6371  Oncon0 6372  Lim wlim 6373  suc csuc 6374  Fun wfun 6545   Fn wfn 6546  wf 6547  cfv 6551  ωcom 7874  cen 8965  cdom 8966  csdm 8967  𝑅1cr1 9791  cardccrd 9964  cfccf 9966  Inaccwcwina 10711  Inacccina 10712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-ac2 10492
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-oi 9539  df-r1 9793  df-rank 9794  df-card 9968  df-cf 9970  df-acn 9971  df-ac 10145  df-wina 10713  df-ina 10714
This theorem is referenced by:  r1omALT  10805  inatsk  10807
  Copyright terms: Public domain W3C validator