Step | Hyp | Ref
| Expression |
1 | | inawina 10446 |
. . . . . 6
⊢ (𝐴 ∈ Inacc → 𝐴 ∈
Inaccw) |
2 | | winaon 10444 |
. . . . . 6
⊢ (𝐴 ∈ Inaccw →
𝐴 ∈
On) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ Inacc → 𝐴 ∈ On) |
4 | | winalim 10451 |
. . . . . 6
⊢ (𝐴 ∈ Inaccw →
Lim 𝐴) |
5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ Inacc → Lim 𝐴) |
6 | | r1lim 9530 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ Lim 𝐴) →
(𝑅1‘𝐴) = ∪
𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
7 | 3, 5, 6 | syl2anc 584 |
. . . 4
⊢ (𝐴 ∈ Inacc →
(𝑅1‘𝐴) = ∪
𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
8 | | onelon 6291 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
9 | 3, 8 | sylan 580 |
. . . . . . . 8
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
10 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
11 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
(𝑅1‘𝑥) =
(𝑅1‘∅)) |
12 | 11 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ →
((𝑅1‘𝑥) ≺ 𝐴 ↔
(𝑅1‘∅) ≺ 𝐴)) |
13 | 10, 12 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ≺ 𝐴) ↔ (∅ ∈ 𝐴 →
(𝑅1‘∅) ≺ 𝐴))) |
14 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
15 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘𝑦)) |
16 | 15 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ≺ 𝐴 ↔ (𝑅1‘𝑦) ≺ 𝐴)) |
17 | 14, 16 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ≺ 𝐴) ↔ (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) |
18 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴)) |
19 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘suc 𝑦)) |
20 | 19 | breq1d 5084 |
. . . . . . . . . . 11
⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ≺ 𝐴 ↔ (𝑅1‘suc
𝑦) ≺ 𝐴)) |
21 | 18, 20 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = suc 𝑦 → ((𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ≺ 𝐴) ↔ (suc 𝑦 ∈ 𝐴 → (𝑅1‘suc
𝑦) ≺ 𝐴))) |
22 | | ne0i 4268 |
. . . . . . . . . . . . 13
⊢ (∅
∈ 𝐴 → 𝐴 ≠ ∅) |
23 | | 0sdomg 8891 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (∅
≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
24 | 22, 23 | syl5ibr 245 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 → ∅
≺ 𝐴)) |
25 | | r10 9526 |
. . . . . . . . . . . . 13
⊢
(𝑅1‘∅) = ∅ |
26 | 25 | breq1i 5081 |
. . . . . . . . . . . 12
⊢
((𝑅1‘∅) ≺ 𝐴 ↔ ∅ ≺ 𝐴) |
27 | 24, 26 | syl6ibr 251 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 →
(𝑅1‘∅) ≺ 𝐴)) |
28 | 1, 2, 27 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Inacc → (∅
∈ 𝐴 →
(𝑅1‘∅) ≺ 𝐴)) |
29 | | eloni 6276 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → Ord 𝐴) |
30 | | ordtr 6280 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝐴 → Tr 𝐴) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → Tr 𝐴) |
32 | | trsuc 6350 |
. . . . . . . . . . . . . . 15
⊢ ((Tr
𝐴 ∧ suc 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
33 | 32 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (Tr 𝐴 → (suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
34 | 3, 31, 33 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Inacc → (suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
35 | 34 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → (suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
36 | | r1suc 9528 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ On →
(𝑅1‘suc 𝑦) = 𝒫
(𝑅1‘𝑦)) |
37 | | fvex 6787 |
. . . . . . . . . . . . . . . . . 18
⊢
(𝑅1‘𝑦) ∈ V |
38 | 37 | cardid 10303 |
. . . . . . . . . . . . . . . . 17
⊢
(card‘(𝑅1‘𝑦)) ≈ (𝑅1‘𝑦) |
39 | 38 | ensymi 8790 |
. . . . . . . . . . . . . . . 16
⊢
(𝑅1‘𝑦) ≈
(card‘(𝑅1‘𝑦)) |
40 | | pwen 8937 |
. . . . . . . . . . . . . . . 16
⊢
((𝑅1‘𝑦) ≈
(card‘(𝑅1‘𝑦)) → 𝒫
(𝑅1‘𝑦) ≈ 𝒫
(card‘(𝑅1‘𝑦))) |
41 | 39, 40 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 𝒫
(𝑅1‘𝑦) ≈ 𝒫
(card‘(𝑅1‘𝑦)) |
42 | 36, 41 | eqbrtrdi 5113 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ On →
(𝑅1‘suc 𝑦) ≈ 𝒫
(card‘(𝑅1‘𝑦))) |
43 | | winacard 10448 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ Inaccw →
(card‘𝐴) = 𝐴) |
44 | 43 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ Inaccw →
((card‘(𝑅1‘𝑦)) ∈ (card‘𝐴) ↔
(card‘(𝑅1‘𝑦)) ∈ 𝐴)) |
45 | | cardsdom 10311 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((𝑅1‘𝑦) ∈ V ∧ 𝐴 ∈ On) →
((card‘(𝑅1‘𝑦)) ∈ (card‘𝐴) ↔ (𝑅1‘𝑦) ≺ 𝐴)) |
46 | 37, 2, 45 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ Inaccw →
((card‘(𝑅1‘𝑦)) ∈ (card‘𝐴) ↔ (𝑅1‘𝑦) ≺ 𝐴)) |
47 | 44, 46 | bitr3d 280 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ Inaccw →
((card‘(𝑅1‘𝑦)) ∈ 𝐴 ↔ (𝑅1‘𝑦) ≺ 𝐴)) |
48 | 1, 47 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ Inacc →
((card‘(𝑅1‘𝑦)) ∈ 𝐴 ↔ (𝑅1‘𝑦) ≺ 𝐴)) |
49 | | elina 10443 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧
(cf‘𝐴) = 𝐴 ∧ ∀𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴)) |
50 | 49 | simp3bi 1146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ Inacc →
∀𝑧 ∈ 𝐴 𝒫 𝑧 ≺ 𝐴) |
51 | | pweq 4549 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 =
(card‘(𝑅1‘𝑦)) → 𝒫 𝑧 = 𝒫
(card‘(𝑅1‘𝑦))) |
52 | 51 | breq1d 5084 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 =
(card‘(𝑅1‘𝑦)) → (𝒫 𝑧 ≺ 𝐴 ↔ 𝒫
(card‘(𝑅1‘𝑦)) ≺ 𝐴)) |
53 | 52 | rspccv 3558 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑧 ∈
𝐴 𝒫 𝑧 ≺ 𝐴 →
((card‘(𝑅1‘𝑦)) ∈ 𝐴 → 𝒫
(card‘(𝑅1‘𝑦)) ≺ 𝐴)) |
54 | 50, 53 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ Inacc →
((card‘(𝑅1‘𝑦)) ∈ 𝐴 → 𝒫
(card‘(𝑅1‘𝑦)) ≺ 𝐴)) |
55 | 48, 54 | sylbird 259 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ Inacc →
((𝑅1‘𝑦) ≺ 𝐴 → 𝒫
(card‘(𝑅1‘𝑦)) ≺ 𝐴)) |
56 | 55 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ Inacc ∧
(𝑅1‘𝑦) ≺ 𝐴) → 𝒫
(card‘(𝑅1‘𝑦)) ≺ 𝐴) |
57 | | ensdomtr 8900 |
. . . . . . . . . . . . . 14
⊢
(((𝑅1‘suc 𝑦) ≈ 𝒫
(card‘(𝑅1‘𝑦)) ∧ 𝒫
(card‘(𝑅1‘𝑦)) ≺ 𝐴) → (𝑅1‘suc
𝑦) ≺ 𝐴) |
58 | 42, 56, 57 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ (𝐴 ∈ Inacc ∧
(𝑅1‘𝑦) ≺ 𝐴)) → (𝑅1‘suc
𝑦) ≺ 𝐴) |
59 | 58 | expr 457 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) →
((𝑅1‘𝑦) ≺ 𝐴 → (𝑅1‘suc
𝑦) ≺ 𝐴)) |
60 | 35, 59 | imim12d 81 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) → (suc 𝑦 ∈ 𝐴 → (𝑅1‘suc
𝑦) ≺ 𝐴))) |
61 | 60 | ex 413 |
. . . . . . . . . 10
⊢ (𝑦 ∈ On → (𝐴 ∈ Inacc → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) → (suc 𝑦 ∈ 𝐴 → (𝑅1‘suc
𝑦) ≺ 𝐴)))) |
62 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
63 | | r1lim 9530 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) →
(𝑅1‘𝑥) = ∪ 𝑧 ∈ 𝑥 (𝑅1‘𝑧)) |
64 | 62, 63 | mpan 687 |
. . . . . . . . . . . . . . 15
⊢ (Lim
𝑥 →
(𝑅1‘𝑥) = ∪ 𝑧 ∈ 𝑥 (𝑅1‘𝑧)) |
65 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦𝑧 |
66 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦(𝑅1‘𝑧) |
67 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦
≼ |
68 | | nfiu1 4958 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) |
69 | 66, 67, 68 | nfbr 5121 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦(𝑅1‘𝑧) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) |
70 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑧 → (𝑅1‘𝑦) =
(𝑅1‘𝑧)) |
71 | 70 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → ((𝑅1‘𝑦) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ↔ (𝑅1‘𝑧) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
72 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(card‘(𝑅1‘𝑦)) ∈ V |
73 | 62, 72 | iunex 7811 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ V |
74 | | ssiun2 4977 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝑥 →
(card‘(𝑅1‘𝑦)) ⊆ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
75 | | ssdomg 8786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ V →
((card‘(𝑅1‘𝑦)) ⊆ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) →
(card‘(𝑅1‘𝑦)) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
76 | 73, 74, 75 | mpsyl 68 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ 𝑥 →
(card‘(𝑅1‘𝑦)) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
77 | | endomtr 8798 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((𝑅1‘𝑦) ≈
(card‘(𝑅1‘𝑦)) ∧
(card‘(𝑅1‘𝑦)) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝑅1‘𝑦) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
78 | 39, 76, 77 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝑥 → (𝑅1‘𝑦) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
79 | 65, 69, 71, 78 | vtoclgaf 3512 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑥 → (𝑅1‘𝑧) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
80 | 79 | rgen 3074 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑧 ∈
𝑥
(𝑅1‘𝑧) ≼ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) |
81 | | iundom 10298 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ V ∧ ∀𝑧 ∈ 𝑥 (𝑅1‘𝑧) ≼ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → ∪ 𝑧 ∈ 𝑥 (𝑅1‘𝑧) ≼ (𝑥 × ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
82 | 62, 80, 81 | mp2an 689 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 ∈ 𝑥 (𝑅1‘𝑧) ≼ (𝑥 × ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
83 | 62, 73 | unex 7596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ V |
84 | | ssun2 4107 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ⊆ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
85 | | ssdomg 8786 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ V → (∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ⊆ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
86 | 83, 84, 85 | mp2 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
87 | 62 | xpdom2 8854 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝑥 × ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ (𝑥 × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
88 | 86, 87 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 × ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ (𝑥 × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
89 | | ssun1 4106 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ⊆ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
90 | | ssdomg 8786 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ V → (𝑥 ⊆ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → 𝑥 ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
91 | 83, 89, 90 | mp2 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑥 ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
92 | 83 | xpdom1 8858 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝑥 × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ≼ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
93 | 91, 92 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ≼ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
94 | | domtr 8793 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 × ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ (𝑥 × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ∧ (𝑥 × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ≼ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) → (𝑥 × ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
95 | 88, 93, 94 | mp2an 689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 × ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
96 | | limomss 7717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Lim
𝑥 → ω ⊆
𝑥) |
97 | 96, 89 | sstrdi 3933 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Lim
𝑥 → ω ⊆
(𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
98 | | ssdomg 8786 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ V → (ω ⊆ (𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → ω ≼ (𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
99 | 83, 97, 98 | mpsyl 68 |
. . . . . . . . . . . . . . . . . 18
⊢ (Lim
𝑥 → ω ≼
(𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
100 | | infxpidm 10318 |
. . . . . . . . . . . . . . . . . 18
⊢ (ω
≼ (𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ≈ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (Lim
𝑥 → ((𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ≈ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
102 | | domentr 8799 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 × ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ∧ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) × (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) ≈ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) → (𝑥 × ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
103 | 95, 101, 102 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝑥 → (𝑥 × ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
104 | | domtr 8793 |
. . . . . . . . . . . . . . . 16
⊢
((∪ 𝑧 ∈ 𝑥 (𝑅1‘𝑧) ≼ (𝑥 × ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∧ (𝑥 × ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) → ∪ 𝑧 ∈ 𝑥 (𝑅1‘𝑧) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
105 | 82, 103, 104 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (Lim
𝑥 → ∪ 𝑧 ∈ 𝑥 (𝑅1‘𝑧) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
106 | 64, 105 | eqbrtrd 5096 |
. . . . . . . . . . . . . 14
⊢ (Lim
𝑥 →
(𝑅1‘𝑥) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
107 | 106 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) →
(𝑅1‘𝑥) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
108 | | eleq1a 2834 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐴 → (𝐴 = 𝑥 → 𝐴 ∈ 𝐴)) |
109 | | ordirr 6284 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord
𝐴 → ¬ 𝐴 ∈ 𝐴) |
110 | 3, 29, 109 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ Inacc → ¬ 𝐴 ∈ 𝐴) |
111 | 108, 110 | nsyli 157 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐴 → (𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥)) |
112 | 111 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ Inacc) → ¬ 𝐴 = 𝑥) |
113 | 112 | ad2ant2r 744 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑥) |
114 | | simpll 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → 𝑥 ∈ 𝐴) |
115 | | limord 6325 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Lim
𝑥 → Ord 𝑥) |
116 | 62 | elon 6275 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
117 | 115, 116 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (Lim
𝑥 → 𝑥 ∈ On) |
118 | 117 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → 𝑥 ∈ On) |
119 | | cardf 10306 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
card:V⟶On |
120 | | r1fnon 9525 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
𝑅1 Fn On |
121 | | dffn2 6602 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(𝑅1 Fn On ↔
𝑅1:On⟶V) |
122 | 120, 121 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
𝑅1:On⟶V |
123 | | fco 6624 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((card:V⟶On ∧ 𝑅1:On⟶V) → (card
∘ 𝑅1):On⟶On) |
124 | 119, 122,
123 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (card
∘ 𝑅1):On⟶On |
125 | | onss 7634 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
126 | | fssres 6640 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((card
∘ 𝑅1):On⟶On ∧ 𝑥 ⊆ On) → ((card ∘
𝑅1) ↾ 𝑥):𝑥⟶On) |
127 | 124, 125,
126 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ On → ((card ∘
𝑅1) ↾ 𝑥):𝑥⟶On) |
128 | | ffn 6600 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((card
∘ 𝑅1) ↾ 𝑥):𝑥⟶On → ((card ∘
𝑅1) ↾ 𝑥) Fn 𝑥) |
129 | 118, 127,
128 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((card ∘
𝑅1) ↾ 𝑥) Fn 𝑥) |
130 | 3 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → 𝐴 ∈ On) |
131 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
132 | | simplll 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝐴) |
133 | | ontr1 6312 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐴 ∈ On → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
134 | 133 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ On ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
135 | 130, 131,
132, 134 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴) |
136 | 37, 130, 45 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) →
((card‘(𝑅1‘𝑦)) ∈ (card‘𝐴) ↔ (𝑅1‘𝑦) ≺ 𝐴)) |
137 | 1, 43 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐴 ∈ Inacc →
(card‘𝐴) = 𝐴) |
138 | 137 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → (card‘𝐴) = 𝐴) |
139 | 138 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) →
((card‘(𝑅1‘𝑦)) ∈ (card‘𝐴) ↔
(card‘(𝑅1‘𝑦)) ∈ 𝐴)) |
140 | 136, 139 | bitr3d 280 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → ((𝑅1‘𝑦) ≺ 𝐴 ↔
(card‘(𝑅1‘𝑦)) ∈ 𝐴)) |
141 | 140 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → ((𝑅1‘𝑦) ≺ 𝐴 →
(card‘(𝑅1‘𝑦)) ∈ 𝐴)) |
142 | 135, 141 | embantd 59 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) →
(card‘(𝑅1‘𝑦)) ∈ 𝐴)) |
143 | 117 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → 𝑥 ∈ On) |
144 | | fvres 6793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ 𝑥 → (((card ∘
𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘
𝑅1)‘𝑦)) |
145 | 144 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (((card ∘
𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘
𝑅1)‘𝑦)) |
146 | | onelon 6291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
147 | | fvco3 6867 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((𝑅1:On⟶V ∧ 𝑦 ∈ On) → ((card ∘
𝑅1)‘𝑦) =
(card‘(𝑅1‘𝑦))) |
148 | 122, 146,
147 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((card ∘
𝑅1)‘𝑦) =
(card‘(𝑅1‘𝑦))) |
149 | 145, 148 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (((card ∘
𝑅1) ↾ 𝑥)‘𝑦) =
(card‘(𝑅1‘𝑦))) |
150 | 143, 149 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → (((card ∘
𝑅1) ↾ 𝑥)‘𝑦) =
(card‘(𝑅1‘𝑦))) |
151 | 150 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → ((((card ∘
𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴 ↔
(card‘(𝑅1‘𝑦)) ∈ 𝐴)) |
152 | 142, 151 | sylibrd 258 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) → (((card ∘
𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴)) |
153 | 152 | ralimdva 3108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) → ∀𝑦 ∈ 𝑥 (((card ∘ 𝑅1)
↾ 𝑥)‘𝑦) ∈ 𝐴)) |
154 | 153 | impr 455 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ∀𝑦 ∈ 𝑥 (((card ∘ 𝑅1)
↾ 𝑥)‘𝑦) ∈ 𝐴) |
155 | | ffnfv 6992 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((card
∘ 𝑅1) ↾ 𝑥):𝑥⟶𝐴 ↔ (((card ∘
𝑅1) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (((card ∘ 𝑅1)
↾ 𝑥)‘𝑦) ∈ 𝐴)) |
156 | 129, 154,
155 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((card ∘
𝑅1) ↾ 𝑥):𝑥⟶𝐴) |
157 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
158 | 157 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
159 | | eliun 4928 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ↔ ∃𝑦 ∈ 𝑥 𝑧 ∈
(card‘(𝑅1‘𝑦))) |
160 | | cardon 9702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(card‘(𝑅1‘𝑦)) ∈ On |
161 | 160 | onelssi 6375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈
(card‘(𝑅1‘𝑦)) → 𝑧 ⊆
(card‘(𝑅1‘𝑦))) |
162 | 149 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦) ↔ 𝑧 ⊆
(card‘(𝑅1‘𝑦)))) |
163 | 161, 162 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑧 ∈
(card‘(𝑅1‘𝑦)) → 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
164 | 163 | reximdva 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ On → (∃𝑦 ∈ 𝑥 𝑧 ∈
(card‘(𝑅1‘𝑦)) → ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
165 | 159, 164 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ On → (𝑧 ∈ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
166 | 158, 165 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ On → ((𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∧ 𝑧 ∈ 𝐴) → ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
167 | 166 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ On ∧ 𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝑧 ∈ 𝐴 → ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
168 | 167 | ralrimiv 3102 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ On ∧ 𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦)) |
169 | 168 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ On → (𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
170 | 118, 169 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
171 | | ffun 6603 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((card
∘ 𝑅1):On⟶On → Fun (card ∘
𝑅1)) |
172 | 124, 171 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ Fun (card
∘ 𝑅1) |
173 | | resfunexg 7091 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((Fun
(card ∘ 𝑅1) ∧ 𝑥 ∈ V) → ((card ∘
𝑅1) ↾ 𝑥) ∈ V) |
174 | 172, 62, 173 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((card
∘ 𝑅1) ↾ 𝑥) ∈ V |
175 | | feq1 6581 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = ((card ∘
𝑅1) ↾ 𝑥) → (𝑤:𝑥⟶𝐴 ↔ ((card ∘
𝑅1) ↾ 𝑥):𝑥⟶𝐴)) |
176 | | fveq1 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = ((card ∘
𝑅1) ↾ 𝑥) → (𝑤‘𝑦) = (((card ∘ 𝑅1)
↾ 𝑥)‘𝑦)) |
177 | 176 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = ((card ∘
𝑅1) ↾ 𝑥) → (𝑧 ⊆ (𝑤‘𝑦) ↔ 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
178 | 177 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = ((card ∘
𝑅1) ↾ 𝑥) → (∃𝑦 ∈ 𝑥 𝑧 ⊆ (𝑤‘𝑦) ↔ ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
179 | 178 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = ((card ∘
𝑅1) ↾ 𝑥) → (∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (𝑤‘𝑦) ↔ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦))) |
180 | 175, 179 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = ((card ∘
𝑅1) ↾ 𝑥) → ((𝑤:𝑥⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (𝑤‘𝑦)) ↔ (((card ∘
𝑅1) ↾ 𝑥):𝑥⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦)))) |
181 | 174, 180 | spcev 3545 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((card
∘ 𝑅1) ↾ 𝑥):𝑥⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (((card ∘
𝑅1) ↾ 𝑥)‘𝑦)) → ∃𝑤(𝑤:𝑥⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (𝑤‘𝑦))) |
182 | 156, 170,
181 | syl6an 681 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → ∃𝑤(𝑤:𝑥⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (𝑤‘𝑦)))) |
183 | 3 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → 𝐴 ∈ On) |
184 | | cfflb 10015 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑤(𝑤:𝑥⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (𝑤‘𝑦)) → (cf‘𝐴) ⊆ 𝑥)) |
185 | 183, 118,
184 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (∃𝑤(𝑤:𝑥⟶𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑦 ∈ 𝑥 𝑧 ⊆ (𝑤‘𝑦)) → (cf‘𝐴) ⊆ 𝑥)) |
186 | 182, 185 | syld 47 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → (cf‘𝐴) ⊆ 𝑥)) |
187 | 49 | simp2bi 1145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ Inacc →
(cf‘𝐴) = 𝐴) |
188 | 187 | sseq1d 3952 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ Inacc →
((cf‘𝐴) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) |
189 | 188 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((cf‘𝐴) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥)) |
190 | 186, 189 | sylibd 238 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → 𝐴 ⊆ 𝑥)) |
191 | | ontri1 6300 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴)) |
192 | 183, 118,
191 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴)) |
193 | 190, 192 | sylibd 238 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) → ¬ 𝑥 ∈ 𝐴)) |
194 | 114, 193 | mt2d 136 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ¬ 𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
195 | | iunon 8170 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ On) → ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ On) |
196 | 62, 195 | mpan 687 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
𝑥
(card‘(𝑅1‘𝑦)) ∈ On → ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ On) |
197 | 160 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝑥 →
(card‘(𝑅1‘𝑦)) ∈ On) |
198 | 196, 197 | mprg 3078 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ On |
199 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴 ↔ 𝐴 = (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)))) |
200 | | eloni 6276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ On → Ord 𝑥) |
201 | | eloni 6276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ On → Ord ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) |
202 | | ordequn 6366 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord
𝑥 ∧ Ord ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝐴 = (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
203 | 200, 201,
202 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On ∧ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ On) → (𝐴 = (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
204 | 199, 203 | syl5bi 241 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On ∧ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ∈ On) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴 → (𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
205 | 118, 198,
204 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴 → (𝐴 = 𝑥 ∨ 𝐴 = ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))))) |
206 | 113, 194,
205 | mtord 877 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ¬ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴) |
207 | | onelss 6308 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ On → (𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴)) |
208 | 183, 114,
207 | sylc 65 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → 𝑥 ⊆ 𝐴) |
209 | | onelss 6308 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐴 ∈ On →
((card‘(𝑅1‘𝑦)) ∈ 𝐴 →
(card‘(𝑅1‘𝑦)) ⊆ 𝐴)) |
210 | 130, 142,
209 | sylsyld 61 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) →
(card‘(𝑅1‘𝑦)) ⊆ 𝐴)) |
211 | 210 | ralimdva 3108 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) → ∀𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ⊆ 𝐴)) |
212 | 211 | impr 455 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ∀𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ⊆ 𝐴) |
213 | | iunss 4975 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ⊆ 𝐴 ↔ ∀𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ⊆ 𝐴) |
214 | 212, 213 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) ⊆ 𝐴) |
215 | 208, 214 | unssd 4120 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ⊆ 𝐴) |
216 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑥 = if(𝑥 ∈ On, 𝑥, ∅)) |
217 | | iuneq1 4940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦)) = ∪
𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦))) |
218 | 216, 217 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = (if(𝑥 ∈ On, 𝑥, ∅) ∪ ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦)))) |
219 | 218 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ On ↔ (if(𝑥 ∈ On, 𝑥, ∅) ∪ ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦))) ∈ On)) |
220 | | 0elon 6319 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ∅
∈ On |
221 | 220 | elimel 4528 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ if(𝑥 ∈ On, 𝑥, ∅) ∈ On |
222 | 221 | elexi 3451 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ if(𝑥 ∈ On, 𝑥, ∅) ∈ V |
223 | | iunon 8170 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((if(𝑥 ∈ On,
𝑥, ∅) ∈ V ∧
∀𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦)) ∈ On) → ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦)) ∈ On) |
224 | 222, 223 | mpan 687 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(∀𝑦 ∈ if
(𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦)) ∈ On → ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦)) ∈ On) |
225 | 160 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ if(𝑥 ∈ On, 𝑥, ∅) →
(card‘(𝑅1‘𝑦)) ∈ On) |
226 | 224, 225 | mprg 3078 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦)) ∈ On |
227 | 221, 226 | onun2i 6382 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (if(𝑥 ∈ On, 𝑥, ∅) ∪ ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥,
∅)(card‘(𝑅1‘𝑦))) ∈ On |
228 | 219, 227 | dedth 4517 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ On → (𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ On) |
229 | 117, 228 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Lim
𝑥 → (𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ On) |
230 | 229 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝐴 ∧ Lim 𝑥) → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ On) |
231 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ Inacc ∧
∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴)) → 𝐴 ∈ On) |
232 | | onsseleq 6307 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∪ ∪ 𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ⊆ 𝐴 ↔ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴 ∨ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴))) |
233 | 230, 231,
232 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ⊆ 𝐴 ↔ ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴 ∨ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴))) |
234 | 215, 233 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴 ∨ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴)) |
235 | 234 | orcomd 868 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴 ∨ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴)) |
236 | 235 | ord 861 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (¬ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) = 𝐴 → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴)) |
237 | 206, 236 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴) |
238 | 137 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (card‘𝐴) = 𝐴) |
239 | | iscard 9733 |
. . . . . . . . . . . . . . . 16
⊢
((card‘𝐴) =
𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ≺ 𝐴)) |
240 | 239 | simprbi 497 |
. . . . . . . . . . . . . . 15
⊢
((card‘𝐴) =
𝐴 → ∀𝑧 ∈ 𝐴 𝑧 ≺ 𝐴) |
241 | | breq1 5077 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) → (𝑧 ≺ 𝐴 ↔ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≺ 𝐴)) |
242 | 241 | rspccv 3558 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
𝐴 𝑧 ≺ 𝐴 → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴 → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≺ 𝐴)) |
243 | 238, 240,
242 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → ((𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∈ 𝐴 → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≺ 𝐴)) |
244 | 237, 243 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) → (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≺ 𝐴) |
245 | | domsdomtr 8899 |
. . . . . . . . . . . . 13
⊢
(((𝑅1‘𝑥) ≼ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ∧ (𝑥 ∪ ∪
𝑦 ∈ 𝑥
(card‘(𝑅1‘𝑦))) ≺ 𝐴) → (𝑅1‘𝑥) ≺ 𝐴) |
246 | 107, 244,
245 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴))) →
(𝑅1‘𝑥) ≺ 𝐴) |
247 | 246 | exp43 437 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) → (𝑅1‘𝑥) ≺ 𝐴)))) |
248 | 247 | com4l 92 |
. . . . . . . . . 10
⊢ (Lim
𝑥 → (𝐴 ∈ Inacc → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ≺ 𝐴) → (𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ≺ 𝐴)))) |
249 | 13, 17, 21, 28, 61, 248 | tfinds2 7710 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (𝐴 ∈ Inacc → (𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ≺ 𝐴))) |
250 | 249 | impd 411 |
. . . . . . . 8
⊢ (𝑥 ∈ On → ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) ≺ 𝐴)) |
251 | 9, 250 | mpcom 38 |
. . . . . . 7
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) ≺ 𝐴) |
252 | | sdomdom 8768 |
. . . . . . 7
⊢
((𝑅1‘𝑥) ≺ 𝐴 → (𝑅1‘𝑥) ≼ 𝐴) |
253 | 251, 252 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ Inacc ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) ≼ 𝐴) |
254 | 253 | ralrimiva 3103 |
. . . . 5
⊢ (𝐴 ∈ Inacc →
∀𝑥 ∈ 𝐴
(𝑅1‘𝑥) ≼ 𝐴) |
255 | | iundom 10298 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 (𝑅1‘𝑥) ≼ 𝐴) → ∪
𝑥 ∈ 𝐴 (𝑅1‘𝑥) ≼ (𝐴 × 𝐴)) |
256 | 3, 254, 255 | syl2anc 584 |
. . . 4
⊢ (𝐴 ∈ Inacc → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) ≼ (𝐴 × 𝐴)) |
257 | 7, 256 | eqbrtrd 5096 |
. . 3
⊢ (𝐴 ∈ Inacc →
(𝑅1‘𝐴) ≼ (𝐴 × 𝐴)) |
258 | | winainf 10450 |
. . . . 5
⊢ (𝐴 ∈ Inaccw →
ω ⊆ 𝐴) |
259 | 1, 258 | syl 17 |
. . . 4
⊢ (𝐴 ∈ Inacc → ω
⊆ 𝐴) |
260 | | infxpen 9770 |
. . . 4
⊢ ((𝐴 ∈ On ∧ ω ⊆
𝐴) → (𝐴 × 𝐴) ≈ 𝐴) |
261 | 3, 259, 260 | syl2anc 584 |
. . 3
⊢ (𝐴 ∈ Inacc → (𝐴 × 𝐴) ≈ 𝐴) |
262 | | domentr 8799 |
. . 3
⊢
(((𝑅1‘𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝑅1‘𝐴) ≼ 𝐴) |
263 | 257, 261,
262 | syl2anc 584 |
. 2
⊢ (𝐴 ∈ Inacc →
(𝑅1‘𝐴) ≼ 𝐴) |
264 | | fvex 6787 |
. . 3
⊢
(𝑅1‘𝐴) ∈ V |
265 | 122 | fdmi 6612 |
. . . . 5
⊢ dom
𝑅1 = On |
266 | 2, 265 | eleqtrrdi 2850 |
. . . 4
⊢ (𝐴 ∈ Inaccw →
𝐴 ∈ dom
𝑅1) |
267 | | onssr1 9589 |
. . . 4
⊢ (𝐴 ∈ dom
𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
268 | 1, 266, 267 | 3syl 18 |
. . 3
⊢ (𝐴 ∈ Inacc → 𝐴 ⊆
(𝑅1‘𝐴)) |
269 | | ssdomg 8786 |
. . 3
⊢
((𝑅1‘𝐴) ∈ V → (𝐴 ⊆ (𝑅1‘𝐴) → 𝐴 ≼ (𝑅1‘𝐴))) |
270 | 264, 268,
269 | mpsyl 68 |
. 2
⊢ (𝐴 ∈ Inacc → 𝐴 ≼
(𝑅1‘𝐴)) |
271 | | sbth 8880 |
. 2
⊢
(((𝑅1‘𝐴) ≼ 𝐴 ∧ 𝐴 ≼ (𝑅1‘𝐴)) →
(𝑅1‘𝐴) ≈ 𝐴) |
272 | 263, 270,
271 | syl2anc 584 |
1
⊢ (𝐴 ∈ Inacc →
(𝑅1‘𝐴) ≈ 𝐴) |