MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inar1 Structured version   Visualization version   GIF version

Theorem inar1 10735
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is equipotent to 𝐴. (Contributed by Mario Carneiro, 6-Jun-2013.)
Assertion
Ref Expression
inar1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)

Proof of Theorem inar1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 10650 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 10648 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
31, 2syl 17 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ On)
4 winalim 10655 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
51, 4syl 17 . . . . 5 (𝐴 ∈ Inacc → Lim 𝐴)
6 r1lim 9732 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
73, 5, 6syl2anc 584 . . . 4 (𝐴 ∈ Inacc → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
8 onelon 6360 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
93, 8sylan 580 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 eleq1 2817 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
11 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1211breq1d 5120 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘∅) ≺ 𝐴))
1310, 12imbi12d 344 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴)))
14 eleq1 2817 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
15 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
1615breq1d 5120 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
1714, 16imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)))
18 eleq1 2817 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
19 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2019breq1d 5120 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘suc 𝑦) ≺ 𝐴))
2118, 20imbi12d 344 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
22 ne0i 4307 . . . . . . . . . . . . 13 (∅ ∈ 𝐴𝐴 ≠ ∅)
23 0sdomg 9076 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ≺ 𝐴𝐴 ≠ ∅))
2422, 23imbitrrid 246 . . . . . . . . . . . 12 (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ≺ 𝐴))
25 r10 9728 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
2625breq1i 5117 . . . . . . . . . . . 12 ((𝑅1‘∅) ≺ 𝐴 ↔ ∅ ≺ 𝐴)
2724, 26imbitrrdi 252 . . . . . . . . . . 11 (𝐴 ∈ On → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
281, 2, 273syl 18 . . . . . . . . . 10 (𝐴 ∈ Inacc → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
29 eloni 6345 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Ord 𝐴)
30 ordtr 6349 . . . . . . . . . . . . . . 15 (Ord 𝐴 → Tr 𝐴)
3129, 30syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Tr 𝐴)
32 trsuc 6424 . . . . . . . . . . . . . . 15 ((Tr 𝐴 ∧ suc 𝑦𝐴) → 𝑦𝐴)
3332ex 412 . . . . . . . . . . . . . 14 (Tr 𝐴 → (suc 𝑦𝐴𝑦𝐴))
343, 31, 333syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc → (suc 𝑦𝐴𝑦𝐴))
3534adantl 481 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → (suc 𝑦𝐴𝑦𝐴))
36 r1suc 9730 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37 fvex 6874 . . . . . . . . . . . . . . . . . 18 (𝑅1𝑦) ∈ V
3837cardid 10507 . . . . . . . . . . . . . . . . 17 (card‘(𝑅1𝑦)) ≈ (𝑅1𝑦)
3938ensymi 8978 . . . . . . . . . . . . . . . 16 (𝑅1𝑦) ≈ (card‘(𝑅1𝑦))
40 pwen 9120 . . . . . . . . . . . . . . . 16 ((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) → 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
4139, 40ax-mp 5 . . . . . . . . . . . . . . 15 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦))
4236, 41eqbrtrdi 5149 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
43 winacard 10652 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
4443eleq2d 2815 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
45 cardsdom 10515 . . . . . . . . . . . . . . . . . . 19 (((𝑅1𝑦) ∈ V ∧ 𝐴 ∈ On) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4637, 2, 45sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4744, 46bitr3d 281 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
49 elina 10647 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴 𝒫 𝑧𝐴))
5049simp3bi 1147 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inacc → ∀𝑧𝐴 𝒫 𝑧𝐴)
51 pweq 4580 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (card‘(𝑅1𝑦)) → 𝒫 𝑧 = 𝒫 (card‘(𝑅1𝑦)))
5251breq1d 5120 . . . . . . . . . . . . . . . . . 18 (𝑧 = (card‘(𝑅1𝑦)) → (𝒫 𝑧𝐴 ↔ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5352rspccv 3588 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴 𝒫 𝑧𝐴 → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5450, 53syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5548, 54sylbird 260 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inacc → ((𝑅1𝑦) ≺ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5655imp 406 . . . . . . . . . . . . . 14 ((𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴) → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴)
57 ensdomtr 9083 . . . . . . . . . . . . . 14 (((𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)) ∧ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5842, 56, 57syl2an 596 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴)) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5958expr 456 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑅1𝑦) ≺ 𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))
6035, 59imim12d 81 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
6160ex 412 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴 ∈ Inacc → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))))
62 vex 3454 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
63 r1lim 9732 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
6462, 63mpan 690 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
65 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑦𝑧
66 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑅1𝑧)
67 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑦
68 nfiu1 4994 . . . . . . . . . . . . . . . . . . . 20 𝑦 𝑦𝑥 (card‘(𝑅1𝑦))
6966, 67, 68nfbr 5157 . . . . . . . . . . . . . . . . . . 19 𝑦(𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
70 fveq2 6861 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑅1𝑦) = (𝑅1𝑧))
7170breq1d 5120 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
72 fvex 6874 . . . . . . . . . . . . . . . . . . . . . 22 (card‘(𝑅1𝑦)) ∈ V
7362, 72iunex 7950 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V
74 ssiun2 5014 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥 → (card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)))
75 ssdomg 8974 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V → ((card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)) → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
7673, 74, 75mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥 → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
77 endomtr 8986 . . . . . . . . . . . . . . . . . . . 20 (((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) ∧ (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7839, 76, 77sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7965, 69, 71, 78vtoclgaf 3545 . . . . . . . . . . . . . . . . . 18 (𝑧𝑥 → (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
8079rgen 3047 . . . . . . . . . . . . . . . . 17 𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
81 iundom 10502 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ ∀𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))))
8262, 80, 81mp2an 692 . . . . . . . . . . . . . . . 16 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦)))
8362, 73unex 7723 . . . . . . . . . . . . . . . . . . . 20 (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V
84 ssun2 4145 . . . . . . . . . . . . . . . . . . . 20 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
85 ssdomg 8974 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8683, 84, 85mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
8762xpdom2 9041 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8886, 87ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
89 ssun1 4144 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
90 ssdomg 8974 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9183, 89, 90mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
9283xpdom1 9045 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
94 domtr 8981 . . . . . . . . . . . . . . . . . 18 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9588, 93, 94mp2an 692 . . . . . . . . . . . . . . . . 17 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
96 limomss 7850 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → ω ⊆ 𝑥)
9796, 89sstrdi 3962 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
98 ssdomg 8974 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9983, 97, 98mpsyl 68 . . . . . . . . . . . . . . . . . 18 (Lim 𝑥 → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
100 infxpidm 10522 . . . . . . . . . . . . . . . . . 18 (ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
102 domentr 8987 . . . . . . . . . . . . . . . . 17 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10395, 101, 102sylancr 587 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
104 domtr 8981 . . . . . . . . . . . . . . . 16 (( 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10582, 103, 104sylancr 587 . . . . . . . . . . . . . . 15 (Lim 𝑥 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10664, 105eqbrtrd 5132 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
107106ad2antlr 727 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
108 eleq1a 2824 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 = 𝑥𝐴𝐴))
109 ordirr 6353 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴 → ¬ 𝐴𝐴)
1103, 29, 1093syl 18 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inacc → ¬ 𝐴𝐴)
111108, 110nsyli 157 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥))
112111imp 406 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐴 ∈ Inacc) → ¬ 𝐴 = 𝑥)
113112ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑥)
114 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
115 limord 6396 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
11662elon 6344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On ↔ Ord 𝑥)
117115, 116sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑥𝑥 ∈ On)
118117ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥 ∈ On)
119 cardf 10510 . . . . . . . . . . . . . . . . . . . . . . . . 25 card:V⟶On
120 r1fnon 9727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑅1 Fn On
121 dffn2 6693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
122120, 121mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑅1:On⟶V
123 fco 6715 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((card:V⟶On ∧ 𝑅1:On⟶V) → (card ∘ 𝑅1):On⟶On)
124119, 122, 123mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . 24 (card ∘ 𝑅1):On⟶On
125 onss 7764 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → 𝑥 ⊆ On)
126 fssres 6729 . . . . . . . . . . . . . . . . . . . . . . . 24 (((card ∘ 𝑅1):On⟶On ∧ 𝑥 ⊆ On) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
127124, 125, 126sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
128 ffn 6691 . . . . . . . . . . . . . . . . . . . . . . 23 (((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
129118, 127, 1283syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
1303ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝐴 ∈ On)
131 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝑥)
132 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑥𝐴)
133 ontr1 6382 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
134133imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ (𝑦𝑥𝑥𝐴)) → 𝑦𝐴)
135130, 131, 132, 134syl12anc 836 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝐴)
13637, 130, 45sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
1371, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐴 ∈ Inacc → (card‘𝐴) = 𝐴)
138137ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (card‘𝐴) = 𝐴)
139138eleq2d 2815 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
140136, 139bitr3d 281 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
141140biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 → (card‘(𝑅1𝑦)) ∈ 𝐴))
142135, 141embantd 59 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ∈ 𝐴))
143117ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → 𝑥 ∈ On)
144 fvres 6880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝑥 → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
145144adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
146 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
147 fvco3 6963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅1:On⟶V ∧ 𝑦 ∈ On) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
148122, 146, 147sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
149145, 148eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
150143, 149sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
151150eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
152142, 151sylibrd 259 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
153152ralimdva 3146 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
154153impr 454 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴)
155 ffnfv 7094 . . . . . . . . . . . . . . . . . . . . . 22 (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ↔ (((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
156129, 154, 155sylanbrc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴)
157 eleq2 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (𝑧𝐴𝑧 𝑦𝑥 (card‘(𝑅1𝑦))))
158157biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → 𝑧 𝑦𝑥 (card‘(𝑅1𝑦)))
159 eliun 4962 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ ∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)))
160 cardon 9904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (card‘(𝑅1𝑦)) ∈ On
161160onelssi 6452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (card‘(𝑅1𝑦)))
162149sseq2d 3982 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ↔ 𝑧 ⊆ (card‘(𝑅1𝑦))))
163161, 162imbitrrid 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
164163reximdva 3147 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ On → (∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
165159, 164biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
166158, 165syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
167166expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
168167ralrimiv 3125 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
169168ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
170118, 169syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
171 ffun 6694 . . . . . . . . . . . . . . . . . . . . . . . 24 ((card ∘ 𝑅1):On⟶On → Fun (card ∘ 𝑅1))
172124, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun (card ∘ 𝑅1)
173 resfunexg 7192 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (card ∘ 𝑅1) ∧ 𝑥 ∈ V) → ((card ∘ 𝑅1) ↾ 𝑥) ∈ V)
174172, 62, 173mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 ((card ∘ 𝑅1) ↾ 𝑥) ∈ V
175 feq1 6669 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤:𝑥𝐴 ↔ ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴))
176 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤𝑦) = (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
177176sseq2d 3982 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑧 ⊆ (𝑤𝑦) ↔ 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
178177rexbidv 3158 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∃𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
179178ralbidv 3157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
180175, 179anbi12d 632 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → ((𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) ↔ (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))))
181174, 180spcev 3575 . . . . . . . . . . . . . . . . . . . . 21 ((((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)))
182156, 170, 181syl6an 684 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦))))
1833ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝐴 ∈ On)
184 cfflb 10219 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
185183, 118, 184syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
186182, 185syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (cf‘𝐴) ⊆ 𝑥))
18749simp2bi 1146 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
188187sseq1d 3981 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Inacc → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
189188ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
190186, 189sylibd 239 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → 𝐴𝑥))
191 ontri1 6369 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
192183, 118, 191syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
193190, 192sylibd 239 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ¬ 𝑥𝐴))
194114, 193mt2d 136 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))
195 iunon 8311 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
19662, 195mpan 690 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
197160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (card‘(𝑅1𝑦)) ∈ On)
198196, 197mprg 3051 . . . . . . . . . . . . . . . . 17 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On
199 eqcom 2737 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
200 eloni 6345 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → Ord 𝑥)
201 eloni 6345 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → Ord 𝑦𝑥 (card‘(𝑅1𝑦)))
202 ordequn 6440 . . . . . . . . . . . . . . . . . . 19 ((Ord 𝑥 ∧ Ord 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
203200, 201, 202syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
204199, 203biimtrid 242 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
205118, 198, 204sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
206113, 194, 205mtord 879 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)
207 onelss 6377 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
208183, 114, 207sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
209 onelss 6377 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ On → ((card‘(𝑅1𝑦)) ∈ 𝐴 → (card‘(𝑅1𝑦)) ⊆ 𝐴))
210130, 142, 209sylsyld 61 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ⊆ 𝐴))
211210ralimdva 3146 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴))
212211impr 454 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
213 iunss 5012 . . . . . . . . . . . . . . . . . . . 20 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴 ↔ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
214212, 213sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
215208, 214unssd 4158 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴)
216 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑥 = if(𝑥 ∈ On, 𝑥, ∅))
217 iuneq1 4975 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑦𝑥 (card‘(𝑅1𝑦)) = 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)))
218216, 217uneq12d 4135 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))))
219218eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ↔ (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On))
220 0elon 6390 . . . . . . . . . . . . . . . . . . . . . . . 24 ∅ ∈ On
221220elimel 4561 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑥 ∈ On, 𝑥, ∅) ∈ On
222221elexi 3473 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 ∈ On, 𝑥, ∅) ∈ V
223 iunon 8311 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((if(𝑥 ∈ On, 𝑥, ∅) ∈ V ∧ ∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On) → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
224222, 223mpan 690 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
225160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ if(𝑥 ∈ On, 𝑥, ∅) → (card‘(𝑅1𝑦)) ∈ On)
226224, 225mprg 3051 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On
227221, 226onun2i 6459 . . . . . . . . . . . . . . . . . . . . . 22 (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On
228219, 227dedth 4550 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
229117, 228syl 17 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
230229adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ Lim 𝑥) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
2313adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)) → 𝐴 ∈ On)
232 onsseleq 6376 . . . . . . . . . . . . . . . . . . 19 (((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ∧ 𝐴 ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
233230, 231, 232syl2an 596 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
234215, 233mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴))
235234orcomd 871 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
236235ord 864 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
237206, 236mpd 15 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴)
238137ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (card‘𝐴) = 𝐴)
239 iscard 9935 . . . . . . . . . . . . . . . 16 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑧𝐴 𝑧𝐴))
240239simprbi 496 . . . . . . . . . . . . . . 15 ((card‘𝐴) = 𝐴 → ∀𝑧𝐴 𝑧𝐴)
241 breq1 5113 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 ↔ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
242241rspccv 3588 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 𝑧𝐴 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
243238, 240, 2423syl 18 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
244237, 243mpd 15 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴)
245 domsdomtr 9082 . . . . . . . . . . . . 13 (((𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴)
246107, 244, 245syl2anc 584 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≺ 𝐴)
247246exp43 436 . . . . . . . . . . 11 (𝑥𝐴 → (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴))))
248247com4l 92 . . . . . . . . . 10 (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴))))
24913, 17, 21, 28, 61, 248tfinds2 7843 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ Inacc → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴)))
250249impd 410 . . . . . . . 8 (𝑥 ∈ On → ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴))
2519, 250mpcom 38 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴)
252 sdomdom 8954 . . . . . . 7 ((𝑅1𝑥) ≺ 𝐴 → (𝑅1𝑥) ≼ 𝐴)
253251, 252syl 17 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≼ 𝐴)
254253ralrimiva 3126 . . . . 5 (𝐴 ∈ Inacc → ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴)
255 iundom 10502 . . . . 5 ((𝐴 ∈ On ∧ ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴) → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2563, 254, 255syl2anc 584 . . . 4 (𝐴 ∈ Inacc → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2577, 256eqbrtrd 5132 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ (𝐴 × 𝐴))
258 winainf 10654 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
2591, 258syl 17 . . . 4 (𝐴 ∈ Inacc → ω ⊆ 𝐴)
260 infxpen 9974 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2613, 259, 260syl2anc 584 . . 3 (𝐴 ∈ Inacc → (𝐴 × 𝐴) ≈ 𝐴)
262 domentr 8987 . . 3 (((𝑅1𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝑅1𝐴) ≼ 𝐴)
263257, 261, 262syl2anc 584 . 2 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ 𝐴)
264 fvex 6874 . . 3 (𝑅1𝐴) ∈ V
265122fdmi 6702 . . . . 5 dom 𝑅1 = On
2662, 265eleqtrrdi 2840 . . . 4 (𝐴 ∈ Inaccw𝐴 ∈ dom 𝑅1)
267 onssr1 9791 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2681, 266, 2673syl 18 . . 3 (𝐴 ∈ Inacc → 𝐴 ⊆ (𝑅1𝐴))
269 ssdomg 8974 . . 3 ((𝑅1𝐴) ∈ V → (𝐴 ⊆ (𝑅1𝐴) → 𝐴 ≼ (𝑅1𝐴)))
270264, 268, 269mpsyl 68 . 2 (𝐴 ∈ Inacc → 𝐴 ≼ (𝑅1𝐴))
271 sbth 9067 . 2 (((𝑅1𝐴) ≼ 𝐴𝐴 ≼ (𝑅1𝐴)) → (𝑅1𝐴) ≈ 𝐴)
272263, 270, 271syl2anc 584 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cun 3915  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566   ciun 4958   class class class wbr 5110  Tr wtr 5217   × cxp 5639  dom cdm 5641  cres 5643  ccom 5645  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  ωcom 7845  cen 8918  cdom 8919  csdm 8920  𝑅1cr1 9722  cardccrd 9895  cfccf 9897  Inaccwcwina 10642  Inacccina 10643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-r1 9724  df-rank 9725  df-card 9899  df-cf 9901  df-acn 9902  df-ac 10076  df-wina 10644  df-ina 10645
This theorem is referenced by:  r1omALT  10736  inatsk  10738
  Copyright terms: Public domain W3C validator