Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralf0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ralf0 4449 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ralf0OLD.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
ralf0OLD | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralf0OLD.1 | . . . 4 ⊢ ¬ 𝜑 | |
2 | mtt 364 | . . . 4 ⊢ (¬ 𝜑 → (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 → 𝜑))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 → 𝜑)) |
4 | 3 | albii 1825 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
5 | eq0 4282 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
6 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | 4, 5, 6 | 3bitr4ri 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-ral 3070 df-dif 3894 df-nul 4262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |