MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralf0OLD Structured version   Visualization version   GIF version

Theorem ralf0OLD 4453
Description: Obsolete version of ralf0 4449 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005.) (Proof shortened by JJ, 14-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralf0OLD.1 ¬ 𝜑
Assertion
Ref Expression
ralf0OLD (∀𝑥𝐴 𝜑𝐴 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralf0OLD
StepHypRef Expression
1 ralf0OLD.1 . . . 4 ¬ 𝜑
2 mtt 364 . . . 4 𝜑 → (¬ 𝑥𝐴 ↔ (𝑥𝐴𝜑)))
31, 2ax-mp 5 . . 3 𝑥𝐴 ↔ (𝑥𝐴𝜑))
43albii 1825 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝜑))
5 eq0 4282 . 2 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
6 df-ral 3070 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
74, 5, 63bitr4ri 303 1 (∀𝑥𝐴 𝜑𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2109  wral 3065  c0 4261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-ral 3070  df-dif 3894  df-nul 4262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator