MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppres Structured version   Visualization version   GIF version

Theorem fnsuppres 8129
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.)
Assertion
Ref Expression
fnsuppres ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))

Proof of Theorem fnsuppres
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fndm 6591 . . . . . 6 (𝐹 Fn (𝐴𝐵) → dom 𝐹 = (𝐴𝐵))
21rabeqdv 3411 . . . . 5 (𝐹 Fn (𝐴𝐵) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
323ad2ant1 1133 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
43sseq1d 3962 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
5 unss 4139 . . . . 5 (({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴) ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
6 ssrab2 4029 . . . . . 6 {𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴
76biantrur 530 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
8 rabun2 4273 . . . . . 6 {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} = ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍})
98sseq1i 3959 . . . . 5 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
105, 7, 93bitr4ri 304 . . . 4 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴)
11 rabss 4019 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴))
12 fvres 6849 . . . . . . . . 9 (𝑎𝐵 → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
1312adantl 481 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
14 simp2r 1201 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝑍𝑉)
15 fvconst2g 7144 . . . . . . . . 9 ((𝑍𝑉𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1614, 15sylan 580 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1713, 16eqeq12d 2749 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎) ↔ (𝐹𝑎) = 𝑍))
18 nne 2933 . . . . . . . 8 (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍)
1918a1i 11 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍))
20 id 22 . . . . . . . . 9 (𝑎𝐵𝑎𝐵)
21 simp3 1138 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
22 minel 4415 . . . . . . . . 9 ((𝑎𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑎𝐴)
2320, 21, 22syl2anr 597 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ¬ 𝑎𝐴)
24 mtt 364 . . . . . . . 8 𝑎𝐴 → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2523, 24syl 17 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2617, 19, 253bitr2rd 308 . . . . . 6 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2726ralbidva 3154 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2811, 27bitrid 283 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2910, 28bitrid 283 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
304, 29bitrd 279 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
31 fnfun 6588 . . . . . . 7 (𝐹 Fn (𝐴𝐵) → Fun 𝐹)
32313anim1i 1152 . . . . . 6 ((𝐹 Fn (𝐴𝐵) ∧ 𝐹𝑊𝑍𝑉) → (Fun 𝐹𝐹𝑊𝑍𝑉))
33323expb 1120 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (Fun 𝐹𝐹𝑊𝑍𝑉))
34 suppval1 8104 . . . . 5 ((Fun 𝐹𝐹𝑊𝑍𝑉) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3533, 34syl 17 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
36353adant3 1132 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3736sseq1d 3962 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
38 simp1 1136 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐹 Fn (𝐴𝐵))
39 ssun2 4128 . . . . 5 𝐵 ⊆ (𝐴𝐵)
4039a1i 11 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
41 fnssres 6611 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐹𝐵) Fn 𝐵)
4238, 40, 41syl2anc 584 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹𝐵) Fn 𝐵)
43 fnconstg 6718 . . . . 5 (𝑍𝑉 → (𝐵 × {𝑍}) Fn 𝐵)
4443adantl 481 . . . 4 ((𝐹𝑊𝑍𝑉) → (𝐵 × {𝑍}) Fn 𝐵)
45443ad2ant2 1134 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐵 × {𝑍}) Fn 𝐵)
46 eqfnfv 6972 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐵 × {𝑍}) Fn 𝐵) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4742, 45, 46syl2anc 584 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4830, 37, 473bitr4d 311 1 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577   × cxp 5619  dom cdm 5621  cres 5623  Fun wfun 6482   Fn wfn 6483  cfv 6488  (class class class)co 7354   supp csupp 8098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-supp 8099
This theorem is referenced by:  fnsuppeq0  8130  frlmsslss2  21716  resf1o  32719
  Copyright terms: Public domain W3C validator