Step | Hyp | Ref
| Expression |
1 | | fndm 6536 |
. . . . . 6
⊢ (𝐹 Fn (𝐴 ∪ 𝐵) → dom 𝐹 = (𝐴 ∪ 𝐵)) |
2 | 1 | rabeqdv 3419 |
. . . . 5
⊢ (𝐹 Fn (𝐴 ∪ 𝐵) → {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍}) |
3 | 2 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍}) |
4 | 3 | sseq1d 3952 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴)) |
5 | | unss 4118 |
. . . . 5
⊢ (({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴) ↔ ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ∪ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍}) ⊆ 𝐴) |
6 | | ssrab2 4013 |
. . . . . 6
⊢ {𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 |
7 | 6 | biantrur 531 |
. . . . 5
⊢ ({𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴)) |
8 | | rabun2 4247 |
. . . . . 6
⊢ {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} = ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ∪ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
9 | 8 | sseq1i 3949 |
. . . . 5
⊢ ({𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ∪ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍}) ⊆ 𝐴) |
10 | 5, 7, 9 | 3bitr4ri 304 |
. . . 4
⊢ ({𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴) |
11 | | rabss 4005 |
. . . . 5
⊢ ({𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴)) |
12 | | fvres 6793 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑎) = (𝐹‘𝑎)) |
13 | 12 | adantl 482 |
. . . . . . . 8
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → ((𝐹 ↾ 𝐵)‘𝑎) = (𝐹‘𝑎)) |
14 | | simp2r 1199 |
. . . . . . . . 9
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑍 ∈ 𝑉) |
15 | | fvconst2g 7077 |
. . . . . . . . 9
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑎 ∈ 𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍) |
16 | 14, 15 | sylan 580 |
. . . . . . . 8
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍) |
17 | 13, 16 | eqeq12d 2754 |
. . . . . . 7
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎) ↔ (𝐹‘𝑎) = 𝑍)) |
18 | | nne 2947 |
. . . . . . . 8
⊢ (¬
(𝐹‘𝑎) ≠ 𝑍 ↔ (𝐹‘𝑎) = 𝑍) |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (¬ (𝐹‘𝑎) ≠ 𝑍 ↔ (𝐹‘𝑎) = 𝑍)) |
20 | | id 22 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐵) |
21 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) |
22 | | minel 4399 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ¬ 𝑎 ∈ 𝐴) |
23 | 20, 21, 22 | syl2anr 597 |
. . . . . . . 8
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → ¬ 𝑎 ∈ 𝐴) |
24 | | mtt 365 |
. . . . . . . 8
⊢ (¬
𝑎 ∈ 𝐴 → (¬ (𝐹‘𝑎) ≠ 𝑍 ↔ ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴))) |
25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (¬ (𝐹‘𝑎) ≠ 𝑍 ↔ ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴))) |
26 | 17, 19, 25 | 3bitr2rd 308 |
. . . . . 6
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴) ↔ ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
27 | 26 | ralbidva 3111 |
. . . . 5
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (∀𝑎 ∈ 𝐵 ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴) ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
28 | 11, 27 | bitrid 282 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
29 | 10, 28 | bitrid 282 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
30 | 4, 29 | bitrd 278 |
. 2
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
31 | | fnfun 6533 |
. . . . . . 7
⊢ (𝐹 Fn (𝐴 ∪ 𝐵) → Fun 𝐹) |
32 | 31 | 3anim1i 1151 |
. . . . . 6
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) |
33 | 32 | 3expb 1119 |
. . . . 5
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) → (Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) |
34 | | suppval1 7983 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
35 | 33, 34 | syl 17 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
36 | 35 | 3adant3 1131 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
37 | 36 | sseq1d 3952 |
. 2
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴)) |
38 | | simp1 1135 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐹 Fn (𝐴 ∪ 𝐵)) |
39 | | ssun2 4107 |
. . . . 5
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
40 | 39 | a1i 11 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ⊆ (𝐴 ∪ 𝐵)) |
41 | | fnssres 6555 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵)) → (𝐹 ↾ 𝐵) Fn 𝐵) |
42 | 38, 40, 41 | syl2anc 584 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ↾ 𝐵) Fn 𝐵) |
43 | | fnconstg 6662 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (𝐵 × {𝑍}) Fn 𝐵) |
44 | 43 | adantl 482 |
. . . 4
⊢ ((𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐵 × {𝑍}) Fn 𝐵) |
45 | 44 | 3ad2ant2 1133 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐵 × {𝑍}) Fn 𝐵) |
46 | | eqfnfv 6909 |
. . 3
⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐵 × {𝑍}) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
47 | 42, 45, 46 | syl2anc 584 |
. 2
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ↾ 𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
48 | 30, 37, 47 | 3bitr4d 311 |
1
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹 ↾ 𝐵) = (𝐵 × {𝑍}))) |