MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppres Structured version   Visualization version   GIF version

Theorem fnsuppres 8007
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.)
Assertion
Ref Expression
fnsuppres ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))

Proof of Theorem fnsuppres
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fndm 6536 . . . . . 6 (𝐹 Fn (𝐴𝐵) → dom 𝐹 = (𝐴𝐵))
21rabeqdv 3419 . . . . 5 (𝐹 Fn (𝐴𝐵) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
323ad2ant1 1132 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
43sseq1d 3952 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
5 unss 4118 . . . . 5 (({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴) ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
6 ssrab2 4013 . . . . . 6 {𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴
76biantrur 531 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
8 rabun2 4247 . . . . . 6 {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} = ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍})
98sseq1i 3949 . . . . 5 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
105, 7, 93bitr4ri 304 . . . 4 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴)
11 rabss 4005 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴))
12 fvres 6793 . . . . . . . . 9 (𝑎𝐵 → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
1312adantl 482 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
14 simp2r 1199 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝑍𝑉)
15 fvconst2g 7077 . . . . . . . . 9 ((𝑍𝑉𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1614, 15sylan 580 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1713, 16eqeq12d 2754 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎) ↔ (𝐹𝑎) = 𝑍))
18 nne 2947 . . . . . . . 8 (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍)
1918a1i 11 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍))
20 id 22 . . . . . . . . 9 (𝑎𝐵𝑎𝐵)
21 simp3 1137 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
22 minel 4399 . . . . . . . . 9 ((𝑎𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑎𝐴)
2320, 21, 22syl2anr 597 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ¬ 𝑎𝐴)
24 mtt 365 . . . . . . . 8 𝑎𝐴 → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2523, 24syl 17 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2617, 19, 253bitr2rd 308 . . . . . 6 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2726ralbidva 3111 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2811, 27bitrid 282 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2910, 28bitrid 282 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
304, 29bitrd 278 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
31 fnfun 6533 . . . . . . 7 (𝐹 Fn (𝐴𝐵) → Fun 𝐹)
32313anim1i 1151 . . . . . 6 ((𝐹 Fn (𝐴𝐵) ∧ 𝐹𝑊𝑍𝑉) → (Fun 𝐹𝐹𝑊𝑍𝑉))
33323expb 1119 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (Fun 𝐹𝐹𝑊𝑍𝑉))
34 suppval1 7983 . . . . 5 ((Fun 𝐹𝐹𝑊𝑍𝑉) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3533, 34syl 17 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
36353adant3 1131 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3736sseq1d 3952 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
38 simp1 1135 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐹 Fn (𝐴𝐵))
39 ssun2 4107 . . . . 5 𝐵 ⊆ (𝐴𝐵)
4039a1i 11 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
41 fnssres 6555 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐹𝐵) Fn 𝐵)
4238, 40, 41syl2anc 584 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹𝐵) Fn 𝐵)
43 fnconstg 6662 . . . . 5 (𝑍𝑉 → (𝐵 × {𝑍}) Fn 𝐵)
4443adantl 482 . . . 4 ((𝐹𝑊𝑍𝑉) → (𝐵 × {𝑍}) Fn 𝐵)
45443ad2ant2 1133 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐵 × {𝑍}) Fn 𝐵)
46 eqfnfv 6909 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐵 × {𝑍}) Fn 𝐵) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4742, 45, 46syl2anc 584 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4830, 37, 473bitr4d 311 1 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   × cxp 5587  dom cdm 5589  cres 5591  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by:  fnsuppeq0  8008  frlmsslss2  20982  resf1o  31065
  Copyright terms: Public domain W3C validator