MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsuppres Structured version   Visualization version   GIF version

Theorem fnsuppres 8170
Description: Two ways to express restriction of a support set. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 28-May-2019.)
Assertion
Ref Expression
fnsuppres ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))

Proof of Theorem fnsuppres
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fndm 6621 . . . . . 6 (𝐹 Fn (𝐴𝐵) → dom 𝐹 = (𝐴𝐵))
21rabeqdv 3421 . . . . 5 (𝐹 Fn (𝐴𝐵) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
323ad2ant1 1133 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍})
43sseq1d 3978 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
5 unss 4153 . . . . 5 (({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴) ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
6 ssrab2 4043 . . . . . 6 {𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴
76biantrur 530 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
8 rabun2 4287 . . . . . 6 {𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} = ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍})
98sseq1i 3975 . . . . 5 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎𝐴 ∣ (𝐹𝑎) ≠ 𝑍} ∪ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍}) ⊆ 𝐴)
105, 7, 93bitr4ri 304 . . . 4 ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴)
11 rabss 4035 . . . . 5 ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴))
12 fvres 6877 . . . . . . . . 9 (𝑎𝐵 → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
1312adantl 481 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐹𝐵)‘𝑎) = (𝐹𝑎))
14 simp2r 1201 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝑍𝑉)
15 fvconst2g 7176 . . . . . . . . 9 ((𝑍𝑉𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1614, 15sylan 580 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍)
1713, 16eqeq12d 2745 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎) ↔ (𝐹𝑎) = 𝑍))
18 nne 2929 . . . . . . . 8 (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍)
1918a1i 11 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ (𝐹𝑎) = 𝑍))
20 id 22 . . . . . . . . 9 (𝑎𝐵𝑎𝐵)
21 simp3 1138 . . . . . . . . 9 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
22 minel 4429 . . . . . . . . 9 ((𝑎𝐵 ∧ (𝐴𝐵) = ∅) → ¬ 𝑎𝐴)
2320, 21, 22syl2anr 597 . . . . . . . 8 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → ¬ 𝑎𝐴)
24 mtt 364 . . . . . . . 8 𝑎𝐴 → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2523, 24syl 17 . . . . . . 7 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (¬ (𝐹𝑎) ≠ 𝑍 ↔ ((𝐹𝑎) ≠ 𝑍𝑎𝐴)))
2617, 19, 253bitr2rd 308 . . . . . 6 (((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐵) → (((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2726ralbidva 3154 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (∀𝑎𝐵 ((𝐹𝑎) ≠ 𝑍𝑎𝐴) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2811, 27bitrid 283 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎𝐵 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
2910, 28bitrid 283 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ (𝐴𝐵) ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
304, 29bitrd 279 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
31 fnfun 6618 . . . . . . 7 (𝐹 Fn (𝐴𝐵) → Fun 𝐹)
32313anim1i 1152 . . . . . 6 ((𝐹 Fn (𝐴𝐵) ∧ 𝐹𝑊𝑍𝑉) → (Fun 𝐹𝐹𝑊𝑍𝑉))
33323expb 1120 . . . . 5 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (Fun 𝐹𝐹𝑊𝑍𝑉))
34 suppval1 8145 . . . . 5 ((Fun 𝐹𝐹𝑊𝑍𝑉) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3533, 34syl 17 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉)) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
36353adant3 1132 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍})
3736sseq1d 3978 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ {𝑎 ∈ dom 𝐹 ∣ (𝐹𝑎) ≠ 𝑍} ⊆ 𝐴))
38 simp1 1136 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐹 Fn (𝐴𝐵))
39 ssun2 4142 . . . . 5 𝐵 ⊆ (𝐴𝐵)
4039a1i 11 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
41 fnssres 6641 . . . 4 ((𝐹 Fn (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐹𝐵) Fn 𝐵)
4238, 40, 41syl2anc 584 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐹𝐵) Fn 𝐵)
43 fnconstg 6748 . . . . 5 (𝑍𝑉 → (𝐵 × {𝑍}) Fn 𝐵)
4443adantl 481 . . . 4 ((𝐹𝑊𝑍𝑉) → (𝐵 × {𝑍}) Fn 𝐵)
45443ad2ant2 1134 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → (𝐵 × {𝑍}) Fn 𝐵)
46 eqfnfv 7003 . . 3 (((𝐹𝐵) Fn 𝐵 ∧ (𝐵 × {𝑍}) Fn 𝐵) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4742, 45, 46syl2anc 584 . 2 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎𝐵 ((𝐹𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎)))
4830, 37, 473bitr4d 311 1 ((𝐹 Fn (𝐴𝐵) ∧ (𝐹𝑊𝑍𝑉) ∧ (𝐴𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹𝐵) = (𝐵 × {𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589   × cxp 5636  dom cdm 5638  cres 5640  Fun wfun 6505   Fn wfn 6506  cfv 6511  (class class class)co 7387   supp csupp 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140
This theorem is referenced by:  fnsuppeq0  8171  frlmsslss2  21684  resf1o  32653
  Copyright terms: Public domain W3C validator