| Step | Hyp | Ref
| Expression |
| 1 | | fndm 6671 |
. . . . . 6
⊢ (𝐹 Fn (𝐴 ∪ 𝐵) → dom 𝐹 = (𝐴 ∪ 𝐵)) |
| 2 | 1 | rabeqdv 3452 |
. . . . 5
⊢ (𝐹 Fn (𝐴 ∪ 𝐵) → {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍}) |
| 3 | 2 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} = {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍}) |
| 4 | 3 | sseq1d 4015 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴)) |
| 5 | | unss 4190 |
. . . . 5
⊢ (({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴) ↔ ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ∪ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍}) ⊆ 𝐴) |
| 6 | | ssrab2 4080 |
. . . . . 6
⊢ {𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 |
| 7 | 6 | biantrur 530 |
. . . . 5
⊢ ({𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ∧ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴)) |
| 8 | | rabun2 4324 |
. . . . . 6
⊢ {𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} = ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ∪ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
| 9 | 8 | sseq1i 4012 |
. . . . 5
⊢ ({𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ({𝑎 ∈ 𝐴 ∣ (𝐹‘𝑎) ≠ 𝑍} ∪ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍}) ⊆ 𝐴) |
| 10 | 5, 7, 9 | 3bitr4ri 304 |
. . . 4
⊢ ({𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ {𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴) |
| 11 | | rabss 4072 |
. . . . 5
⊢ ({𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴)) |
| 12 | | fvres 6925 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑎) = (𝐹‘𝑎)) |
| 13 | 12 | adantl 481 |
. . . . . . . 8
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → ((𝐹 ↾ 𝐵)‘𝑎) = (𝐹‘𝑎)) |
| 14 | | simp2r 1201 |
. . . . . . . . 9
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑍 ∈ 𝑉) |
| 15 | | fvconst2g 7222 |
. . . . . . . . 9
⊢ ((𝑍 ∈ 𝑉 ∧ 𝑎 ∈ 𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍) |
| 16 | 14, 15 | sylan 580 |
. . . . . . . 8
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → ((𝐵 × {𝑍})‘𝑎) = 𝑍) |
| 17 | 13, 16 | eqeq12d 2753 |
. . . . . . 7
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎) ↔ (𝐹‘𝑎) = 𝑍)) |
| 18 | | nne 2944 |
. . . . . . . 8
⊢ (¬
(𝐹‘𝑎) ≠ 𝑍 ↔ (𝐹‘𝑎) = 𝑍) |
| 19 | 18 | a1i 11 |
. . . . . . 7
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (¬ (𝐹‘𝑎) ≠ 𝑍 ↔ (𝐹‘𝑎) = 𝑍)) |
| 20 | | id 22 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ 𝐵) |
| 21 | | simp3 1139 |
. . . . . . . . 9
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) |
| 22 | | minel 4466 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ¬ 𝑎 ∈ 𝐴) |
| 23 | 20, 21, 22 | syl2anr 597 |
. . . . . . . 8
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → ¬ 𝑎 ∈ 𝐴) |
| 24 | | mtt 364 |
. . . . . . . 8
⊢ (¬
𝑎 ∈ 𝐴 → (¬ (𝐹‘𝑎) ≠ 𝑍 ↔ ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴))) |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (¬ (𝐹‘𝑎) ≠ 𝑍 ↔ ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴))) |
| 26 | 17, 19, 25 | 3bitr2rd 308 |
. . . . . 6
⊢ (((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑎 ∈ 𝐵) → (((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴) ↔ ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
| 27 | 26 | ralbidva 3176 |
. . . . 5
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (∀𝑎 ∈ 𝐵 ((𝐹‘𝑎) ≠ 𝑍 → 𝑎 ∈ 𝐴) ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
| 28 | 11, 27 | bitrid 283 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ 𝐵 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
| 29 | 10, 28 | bitrid 283 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ (𝐴 ∪ 𝐵) ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
| 30 | 4, 29 | bitrd 279 |
. 2
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ({𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴 ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
| 31 | | fnfun 6668 |
. . . . . . 7
⊢ (𝐹 Fn (𝐴 ∪ 𝐵) → Fun 𝐹) |
| 32 | 31 | 3anim1i 1153 |
. . . . . 6
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) |
| 33 | 32 | 3expb 1121 |
. . . . 5
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) → (Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) |
| 34 | | suppval1 8191 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
| 35 | 33, 34 | syl 17 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
| 36 | 35 | 3adant3 1133 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 supp 𝑍) = {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍}) |
| 37 | 36 | sseq1d 4015 |
. 2
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ {𝑎 ∈ dom 𝐹 ∣ (𝐹‘𝑎) ≠ 𝑍} ⊆ 𝐴)) |
| 38 | | simp1 1137 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐹 Fn (𝐴 ∪ 𝐵)) |
| 39 | | ssun2 4179 |
. . . . 5
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 40 | 39 | a1i 11 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ⊆ (𝐴 ∪ 𝐵)) |
| 41 | | fnssres 6691 |
. . . 4
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵)) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| 42 | 38, 40, 41 | syl2anc 584 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹 ↾ 𝐵) Fn 𝐵) |
| 43 | | fnconstg 6796 |
. . . . 5
⊢ (𝑍 ∈ 𝑉 → (𝐵 × {𝑍}) Fn 𝐵) |
| 44 | 43 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐵 × {𝑍}) Fn 𝐵) |
| 45 | 44 | 3ad2ant2 1135 |
. . 3
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐵 × {𝑍}) Fn 𝐵) |
| 46 | | eqfnfv 7051 |
. . 3
⊢ (((𝐹 ↾ 𝐵) Fn 𝐵 ∧ (𝐵 × {𝑍}) Fn 𝐵) → ((𝐹 ↾ 𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
| 47 | 42, 45, 46 | syl2anc 584 |
. 2
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ↾ 𝐵) = (𝐵 × {𝑍}) ↔ ∀𝑎 ∈ 𝐵 ((𝐹 ↾ 𝐵)‘𝑎) = ((𝐵 × {𝑍})‘𝑎))) |
| 48 | 30, 37, 47 | 3bitr4d 311 |
1
⊢ ((𝐹 Fn (𝐴 ∪ 𝐵) ∧ (𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 supp 𝑍) ⊆ 𝐴 ↔ (𝐹 ↾ 𝐵) = (𝐵 × {𝑍}))) |