|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nbn | Structured version Visualization version GIF version | ||
| Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) | 
| Ref | Expression | 
|---|---|
| nbn.1 | ⊢ ¬ 𝜑 | 
| Ref | Expression | 
|---|---|
| nbn | ⊢ (¬ 𝜓 ↔ (𝜓 ↔ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nbn.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | bibif 371 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓) | 
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ (𝜓 ↔ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: nbn3 373 nbfal 1554 eq0f 4346 eq0ALT 4350 disj 4449 axnulALT 5303 dm0rn0 5934 reldm0 5937 isarchi 33190 | 
| Copyright terms: Public domain | W3C validator |