| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nbn | Structured version Visualization version GIF version | ||
| Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| nbn.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| nbn | ⊢ (¬ 𝜓 ↔ (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbn.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | bibif 371 | . . 3 ⊢ (¬ 𝜑 → ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜓 ↔ 𝜑) ↔ ¬ 𝜓) |
| 4 | 3 | bicomi 224 | 1 ⊢ (¬ 𝜓 ↔ (𝜓 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: nbn3 373 nbfal 1555 eq0f 4327 eq0ALT 4331 disj 4430 axnulALT 5279 dm0rn0 5909 reldm0 5912 isarchi 33185 |
| Copyright terms: Public domain | W3C validator |