MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj Structured version   Visualization version   GIF version

Theorem disj 4378
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-in 3890 . . . 4 (𝐴𝐵) = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
21eqeq1i 2743 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅)
3 dfcleq 2731 . . . . 5 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}))
4 df-clab 2716 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ [𝑥 / 𝑧](𝑧𝐴𝑧𝐵))
5 sb6 2089 . . . . . . . 8 ([𝑥 / 𝑧](𝑧𝐴𝑧𝐵) ↔ ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
6 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
7 eleq1w 2821 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
87biimpd 228 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1w 2821 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
109biimpd 228 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
118, 10anim12d 608 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) → (𝑥𝐴𝑥𝐵)))
126, 11embantd 59 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵)))
1312spimvw 2000 . . . . . . . . 9 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵))
14 eleq1a 2834 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = 𝑥𝑧𝐴))
15 eleq1a 2834 . . . . . . . . . . 11 (𝑥𝐵 → (𝑧 = 𝑥𝑧𝐵))
1614, 15anim12ii 617 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐵) → (𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1716alrimiv 1931 . . . . . . . . 9 ((𝑥𝐴𝑥𝐵) → ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1813, 17impbii 208 . . . . . . . 8 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) ↔ (𝑥𝐴𝑥𝐵))
194, 5, 183bitri 296 . . . . . . 7 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑥𝐴𝑥𝐵))
2019bibi2i 337 . . . . . 6 ((𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2120albii 1823 . . . . 5 (∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
223, 21bitri 274 . . . 4 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
23 eqcom 2745 . . . 4 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)})
24 bicom 221 . . . . 5 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2524albii 1823 . . . 4 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2622, 23, 253bitr4i 302 . . 3 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
27 imnan 399 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
28 noel 4261 . . . . . 6 ¬ 𝑥 ∈ ∅
2928nbn 372 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
3027, 29bitr2i 275 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
3130albii 1823 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
322, 26, 313bitri 296 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
33 df-ral 3068 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
3432, 33bitr4i 277 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  [wsb 2068  wcel 2108  {cab 2715  wral 3063  cin 3882  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-dif 3886  df-in 3890  df-nul 4254
This theorem is referenced by:  disjr  4380  disj1  4381  disjne  4385  disjord  5058  disjiund  5060  otiunsndisj  5428  dfpo2  6188  onxpdisj  6371  f0rn0  6643  onint  7617  zfreg  9284  kmlem4  9840  fin23lem30  10029  fin23lem31  10030  isf32lem3  10042  fpwwe2  10330  renfdisj  10966  fvinim0ffz  13434  s3iunsndisj  14607  metdsge  23918  2wspmdisj  28602  subfacp1lem1  33041  ssltdisj  33942  dvmptfprodlem  43375  stoweidlem26  43457  stoweidlem59  43490  iundjiunlem  43887  otiunsndisjX  44658
  Copyright terms: Public domain W3C validator