MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj Structured version   Visualization version   GIF version

Theorem disj 4448
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2138, ax-11 2155, ax-12 2172. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-in 3956 . . . 4 (𝐴𝐵) = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
21eqeq1i 2738 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅)
3 dfcleq 2726 . . . . 5 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}))
4 df-clab 2711 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ [𝑥 / 𝑧](𝑧𝐴𝑧𝐵))
5 sb6 2089 . . . . . . . 8 ([𝑥 / 𝑧](𝑧𝐴𝑧𝐵) ↔ ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
6 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
7 eleq1w 2817 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
87biimpd 228 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1w 2817 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
109biimpd 228 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
118, 10anim12d 610 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) → (𝑥𝐴𝑥𝐵)))
126, 11embantd 59 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵)))
1312spimvw 2000 . . . . . . . . 9 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵))
14 eleq1a 2829 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = 𝑥𝑧𝐴))
15 eleq1a 2829 . . . . . . . . . . 11 (𝑥𝐵 → (𝑧 = 𝑥𝑧𝐵))
1614, 15anim12ii 619 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐵) → (𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1716alrimiv 1931 . . . . . . . . 9 ((𝑥𝐴𝑥𝐵) → ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1813, 17impbii 208 . . . . . . . 8 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) ↔ (𝑥𝐴𝑥𝐵))
194, 5, 183bitri 297 . . . . . . 7 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑥𝐴𝑥𝐵))
2019bibi2i 338 . . . . . 6 ((𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2120albii 1822 . . . . 5 (∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
223, 21bitri 275 . . . 4 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
23 eqcom 2740 . . . 4 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)})
24 bicom 221 . . . . 5 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2524albii 1822 . . . 4 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2622, 23, 253bitr4i 303 . . 3 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
27 imnan 401 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
28 noel 4331 . . . . . 6 ¬ 𝑥 ∈ ∅
2928nbn 373 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
3027, 29bitr2i 276 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
3130albii 1822 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
322, 26, 313bitri 297 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
33 df-ral 3063 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
3432, 33bitr4i 278 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  [wsb 2068  wcel 2107  {cab 2710  wral 3062  cin 3948  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-dif 3952  df-in 3956  df-nul 4324
This theorem is referenced by:  disjr  4450  disj1  4451  disjne  4455  disjord  5137  disjiund  5139  otiunsndisj  5521  dfpo2  6296  onxpdisj  6491  f0rn0  6777  onint  7778  zfreg  9590  kmlem4  10148  fin23lem30  10337  fin23lem31  10338  isf32lem3  10350  fpwwe2  10638  renfdisj  11274  fvinim0ffz  13751  s3iunsndisj  14915  metdsge  24365  ssltdisj  27322  2wspmdisj  29590  subfacp1lem1  34170  dvmptfprodlem  44660  stoweidlem26  44742  stoweidlem59  44775  iundjiunlem  45175  otiunsndisjX  45987
  Copyright terms: Public domain W3C validator