| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| disj | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3905 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 2 | 1 | eqeq1i 2738 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = ∅) |
| 3 | eleq1w 2816 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | eleq1w 2816 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 6 | 5 | eqabcbw 2807 | . . 3 ⊢ ({𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = ∅ ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
| 7 | imnan 399 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 8 | noel 4287 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 9 | 8 | nbn 372 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
| 10 | 7, 9 | bitr2i 276 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 11 | 10 | albii 1820 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 12 | 2, 6, 11 | 3bitri 297 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 13 | df-ral 3049 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 14 | 12, 13 | bitr4i 278 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-dif 3901 df-in 3905 df-nul 4283 |
| This theorem is referenced by: disjr 4400 disj1 4401 disjne 4404 disjord 5082 disjiund 5084 otiunsndisj 5463 dfpo2 6248 onxpdisj 6438 f0rn0 6713 onint 7729 zfreg 9489 kmlem4 10052 fin23lem30 10240 fin23lem31 10241 isf32lem3 10253 fpwwe2 10541 renfdisj 11179 fvinim0ffz 13691 s3iunsndisj 14877 metdsge 24766 ssltdisj 27765 dfpth2 29709 2wspmdisj 30319 subfacp1lem1 35244 disjabso 45092 dvmptfprodlem 46066 stoweidlem26 46148 stoweidlem59 46181 iundjiunlem 46581 otiunsndisjX 47403 upgrimpths 48033 |
| Copyright terms: Public domain | W3C validator |