| Step | Hyp | Ref
| Expression |
| 1 | | df-in 3957 |
. . . 4
⊢ (𝐴 ∩ 𝐵) = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
| 2 | 1 | eqeq1i 2741 |
. . 3
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = ∅) |
| 3 | | dfcleq 2729 |
. . . . 5
⊢ (∅
= {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)})) |
| 4 | | df-clab 2714 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ [𝑥 / 𝑧](𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
| 5 | | sb6 2084 |
. . . . . . . 8
⊢ ([𝑥 / 𝑧](𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ↔ ∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
| 6 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
| 7 | | eleq1w 2823 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 8 | 7 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴)) |
| 9 | | eleq1w 2823 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
| 10 | 9 | biimpd 229 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
| 11 | 8, 10 | anim12d 609 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 12 | 6, 11 | embantd 59 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 13 | 12 | spimvw 1994 |
. . . . . . . . 9
⊢
(∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 14 | | eleq1a 2835 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑧 = 𝑥 → 𝑧 ∈ 𝐴)) |
| 15 | | eleq1a 2835 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → (𝑧 = 𝑥 → 𝑧 ∈ 𝐵)) |
| 16 | 14, 15 | anim12ii 618 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
| 17 | 16 | alrimiv 1926 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
| 18 | 13, 17 | impbii 209 |
. . . . . . . 8
⊢
(∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 19 | 4, 5, 18 | 3bitri 297 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 20 | 19 | bibi2i 337 |
. . . . . 6
⊢ ((𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)}) ↔ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 21 | 20 | albii 1818 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)}) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 22 | 3, 21 | bitri 275 |
. . . 4
⊢ (∅
= {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 23 | | eqcom 2743 |
. . . 4
⊢ ({𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = ∅ ↔ ∅ = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)}) |
| 24 | | bicom 222 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 25 | 24 | albii 1818 |
. . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 26 | 22, 23, 25 | 3bitr4i 303 |
. . 3
⊢ ({𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = ∅ ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
| 27 | | imnan 399 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 28 | | noel 4337 |
. . . . . 6
⊢ ¬
𝑥 ∈
∅ |
| 29 | 28 | nbn 372 |
. . . . 5
⊢ (¬
(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
| 30 | 27, 29 | bitr2i 276 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 31 | 30 | albii 1818 |
. . 3
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 32 | 2, 26, 31 | 3bitri 297 |
. 2
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 33 | | df-ral 3061 |
. 2
⊢
(∀𝑥 ∈
𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 34 | 32, 33 | bitr4i 278 |
1
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |