| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by GG, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| disj | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in 3909 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | |
| 2 | 1 | eqeq1i 2736 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = ∅) |
| 3 | eleq1w 2814 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | eleq1w 2814 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 6 | 5 | eqabcbw 2805 | . . 3 ⊢ ({𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = ∅ ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
| 7 | imnan 399 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 8 | noel 4288 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 9 | 8 | nbn 372 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
| 10 | 7, 9 | bitr2i 276 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 11 | 10 | albii 1820 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 12 | 2, 6, 11 | 3bitri 297 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| 13 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 14 | 12, 13 | bitr4i 278 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∩ cin 3901 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-dif 3905 df-in 3909 df-nul 4284 |
| This theorem is referenced by: disjr 4401 disj1 4402 disjne 4405 disjord 5080 disjiund 5082 otiunsndisj 5460 dfpo2 6243 onxpdisj 6433 f0rn0 6708 onint 7723 zfreg 9482 kmlem4 10042 fin23lem30 10230 fin23lem31 10231 isf32lem3 10243 fpwwe2 10531 renfdisj 11169 fvinim0ffz 13686 s3iunsndisj 14872 metdsge 24763 ssltdisj 27762 dfpth2 29705 2wspmdisj 30312 subfacp1lem1 35211 disjabso 45007 dvmptfprodlem 45981 stoweidlem26 46063 stoweidlem59 46096 iundjiunlem 46496 otiunsndisjX 47309 upgrimpths 47939 |
| Copyright terms: Public domain | W3C validator |