Step | Hyp | Ref
| Expression |
1 | | df-in 3866 |
. . . 4
⊢ (𝐴 ∩ 𝐵) = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} |
2 | 1 | eqeq1i 2764 |
. . 3
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = ∅) |
3 | | dfcleq 2752 |
. . . . 5
⊢ (∅
= {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)})) |
4 | | df-clab 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ [𝑥 / 𝑧](𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
5 | | sb6 2091 |
. . . . . . . 8
⊢ ([𝑥 / 𝑧](𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ↔ ∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
6 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
7 | | eleq1w 2835 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
8 | 7 | biimpd 232 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 → 𝑥 ∈ 𝐴)) |
9 | | eleq1w 2835 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
10 | 9 | biimpd 232 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
11 | 8, 10 | anim12d 612 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → ((𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
12 | 6, 11 | embantd 59 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
13 | 12 | spimvw 2003 |
. . . . . . . . 9
⊢
(∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
14 | | eleq1a 2848 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑧 = 𝑥 → 𝑧 ∈ 𝐴)) |
15 | | eleq1a 2848 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐵 → (𝑧 = 𝑥 → 𝑧 ∈ 𝐵)) |
16 | 14, 15 | anim12ii 621 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
17 | 16 | alrimiv 1929 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵))) |
18 | 13, 17 | impbii 212 |
. . . . . . . 8
⊢
(∀𝑧(𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
19 | 4, 5, 18 | 3bitri 301 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
20 | 19 | bibi2i 342 |
. . . . . 6
⊢ ((𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)}) ↔ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
21 | 20 | albii 1822 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)}) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
22 | 3, 21 | bitri 278 |
. . . 4
⊢ (∅
= {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
23 | | eqcom 2766 |
. . . 4
⊢ ({𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = ∅ ↔ ∅ = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)}) |
24 | | bicom 225 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
25 | 24 | albii 1822 |
. . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
26 | 22, 23, 25 | 3bitr4i 307 |
. . 3
⊢ ({𝑧 ∣ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)} = ∅ ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
27 | | imnan 404 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
28 | | noel 4231 |
. . . . . 6
⊢ ¬
𝑥 ∈
∅ |
29 | 28 | nbn 377 |
. . . . 5
⊢ (¬
(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) |
30 | 27, 29 | bitr2i 279 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
31 | 30 | albii 1822 |
. . 3
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
32 | 2, 26, 31 | 3bitri 301 |
. 2
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
33 | | df-ral 3076 |
. 2
⊢
(∀𝑥 ∈
𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
34 | 32, 33 | bitr4i 281 |
1
⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |