MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj Structured version   Visualization version   GIF version

Theorem disj 4449
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2140, ax-11 2156, ax-12 2176. (Revised by GG, 28-Jun-2024.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-in 3957 . . . 4 (𝐴𝐵) = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
21eqeq1i 2741 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅)
3 dfcleq 2729 . . . . 5 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}))
4 df-clab 2714 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ [𝑥 / 𝑧](𝑧𝐴𝑧𝐵))
5 sb6 2084 . . . . . . . 8 ([𝑥 / 𝑧](𝑧𝐴𝑧𝐵) ↔ ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
6 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
7 eleq1w 2823 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
87biimpd 229 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1w 2823 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
109biimpd 229 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
118, 10anim12d 609 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) → (𝑥𝐴𝑥𝐵)))
126, 11embantd 59 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵)))
1312spimvw 1994 . . . . . . . . 9 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵))
14 eleq1a 2835 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = 𝑥𝑧𝐴))
15 eleq1a 2835 . . . . . . . . . . 11 (𝑥𝐵 → (𝑧 = 𝑥𝑧𝐵))
1614, 15anim12ii 618 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐵) → (𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1716alrimiv 1926 . . . . . . . . 9 ((𝑥𝐴𝑥𝐵) → ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1813, 17impbii 209 . . . . . . . 8 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) ↔ (𝑥𝐴𝑥𝐵))
194, 5, 183bitri 297 . . . . . . 7 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑥𝐴𝑥𝐵))
2019bibi2i 337 . . . . . 6 ((𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2120albii 1818 . . . . 5 (∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
223, 21bitri 275 . . . 4 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
23 eqcom 2743 . . . 4 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)})
24 bicom 222 . . . . 5 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2524albii 1818 . . . 4 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2622, 23, 253bitr4i 303 . . 3 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
27 imnan 399 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
28 noel 4337 . . . . . 6 ¬ 𝑥 ∈ ∅
2928nbn 372 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
3027, 29bitr2i 276 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
3130albii 1818 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
322, 26, 313bitri 297 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
33 df-ral 3061 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
3432, 33bitr4i 278 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  [wsb 2063  wcel 2107  {cab 2713  wral 3060  cin 3949  c0 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-dif 3953  df-in 3957  df-nul 4333
This theorem is referenced by:  disjr  4450  disj1  4451  disjne  4454  disjord  5131  disjiund  5133  otiunsndisj  5524  dfpo2  6315  onxpdisj  6509  f0rn0  6792  onint  7811  zfreg  9636  kmlem4  10195  fin23lem30  10383  fin23lem31  10384  isf32lem3  10396  fpwwe2  10684  renfdisj  11322  fvinim0ffz  13826  s3iunsndisj  15008  metdsge  24872  ssltdisj  27867  dfpth2  29750  2wspmdisj  30357  subfacp1lem1  35185  disjabso  44997  dvmptfprodlem  45964  stoweidlem26  46046  stoweidlem59  46079  iundjiunlem  46479  otiunsndisjX  47296
  Copyright terms: Public domain W3C validator