MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj Structured version   Visualization version   GIF version

Theorem disj 4446
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-in 3954 . . . 4 (𝐴𝐵) = {𝑧 ∣ (𝑧𝐴𝑧𝐵)}
21eqeq1i 2737 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅)
3 dfcleq 2725 . . . . 5 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}))
4 df-clab 2710 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ [𝑥 / 𝑧](𝑧𝐴𝑧𝐵))
5 sb6 2088 . . . . . . . 8 ([𝑥 / 𝑧](𝑧𝐴𝑧𝐵) ↔ ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
6 id 22 . . . . . . . . . . 11 (𝑧 = 𝑥𝑧 = 𝑥)
7 eleq1w 2816 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
87biimpd 228 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1w 2816 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
109biimpd 228 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
118, 10anim12d 609 . . . . . . . . . . 11 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) → (𝑥𝐴𝑥𝐵)))
126, 11embantd 59 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵)))
1312spimvw 1999 . . . . . . . . 9 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) → (𝑥𝐴𝑥𝐵))
14 eleq1a 2828 . . . . . . . . . . 11 (𝑥𝐴 → (𝑧 = 𝑥𝑧𝐴))
15 eleq1a 2828 . . . . . . . . . . 11 (𝑥𝐵 → (𝑧 = 𝑥𝑧𝐵))
1614, 15anim12ii 618 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐵) → (𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1716alrimiv 1930 . . . . . . . . 9 ((𝑥𝐴𝑥𝐵) → ∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)))
1813, 17impbii 208 . . . . . . . 8 (∀𝑧(𝑧 = 𝑥 → (𝑧𝐴𝑧𝐵)) ↔ (𝑥𝐴𝑥𝐵))
194, 5, 183bitri 296 . . . . . . 7 (𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑥𝐴𝑥𝐵))
2019bibi2i 337 . . . . . 6 ((𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2120albii 1821 . . . . 5 (∀𝑥(𝑥 ∈ ∅ ↔ 𝑥 ∈ {𝑧 ∣ (𝑧𝐴𝑧𝐵)}) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
223, 21bitri 274 . . . 4 (∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)} ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
23 eqcom 2739 . . . 4 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∅ = {𝑧 ∣ (𝑧𝐴𝑧𝐵)})
24 bicom 221 . . . . 5 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2524albii 1821 . . . 4 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ ∅ ↔ (𝑥𝐴𝑥𝐵)))
2622, 23, 253bitr4i 302 . . 3 ({𝑧 ∣ (𝑧𝐴𝑧𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
27 imnan 400 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
28 noel 4329 . . . . . 6 ¬ 𝑥 ∈ ∅
2928nbn 372 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
3027, 29bitr2i 275 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
3130albii 1821 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
322, 26, 313bitri 296 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
33 df-ral 3062 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
3432, 33bitr4i 277 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  [wsb 2067  wcel 2106  {cab 2709  wral 3061  cin 3946  c0 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-dif 3950  df-in 3954  df-nul 4322
This theorem is referenced by:  disjr  4448  disj1  4449  disjne  4453  disjord  5135  disjiund  5137  otiunsndisj  5519  dfpo2  6292  onxpdisj  6487  f0rn0  6773  onint  7774  zfreg  9586  kmlem4  10144  fin23lem30  10333  fin23lem31  10334  isf32lem3  10346  fpwwe2  10634  renfdisj  11270  fvinim0ffz  13747  s3iunsndisj  14911  metdsge  24356  ssltdisj  27311  2wspmdisj  29579  subfacp1lem1  34158  dvmptfprodlem  44646  stoweidlem26  44728  stoweidlem59  44761  iundjiunlem  45161  otiunsndisjX  45973
  Copyright terms: Public domain W3C validator