MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj Structured version   Visualization version   GIF version

Theorem disj 4399
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by GG, 28-Jun-2024.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-in 3905 . . . 4 (𝐴𝐵) = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
21eqeq1i 2738 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑦 ∣ (𝑦𝐴𝑦𝐵)} = ∅)
3 eleq1w 2816 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
4 eleq1w 2816 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
53, 4anbi12d 632 . . . 4 (𝑦 = 𝑥 → ((𝑦𝐴𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵)))
65eqabcbw 2807 . . 3 ({𝑦 ∣ (𝑦𝐴𝑦𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
7 imnan 399 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
8 noel 4287 . . . . . 6 ¬ 𝑥 ∈ ∅
98nbn 372 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
107, 9bitr2i 276 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
1110albii 1820 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
122, 6, 113bitri 297 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
13 df-ral 3049 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
1412, 13bitr4i 278 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3048  cin 3897  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-dif 3901  df-in 3905  df-nul 4283
This theorem is referenced by:  disjr  4400  disj1  4401  disjne  4404  disjord  5082  disjiund  5084  otiunsndisj  5463  dfpo2  6248  onxpdisj  6438  f0rn0  6713  onint  7729  zfreg  9489  kmlem4  10052  fin23lem30  10240  fin23lem31  10241  isf32lem3  10253  fpwwe2  10541  renfdisj  11179  fvinim0ffz  13691  s3iunsndisj  14877  metdsge  24766  ssltdisj  27765  dfpth2  29709  2wspmdisj  30319  subfacp1lem1  35244  disjabso  45092  dvmptfprodlem  46066  stoweidlem26  46148  stoweidlem59  46181  iundjiunlem  46581  otiunsndisjX  47403  upgrimpths  48033
  Copyright terms: Public domain W3C validator