MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj Structured version   Visualization version   GIF version

Theorem disj 4400
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by GG, 28-Jun-2024.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-in 3909 . . . 4 (𝐴𝐵) = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
21eqeq1i 2736 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑦 ∣ (𝑦𝐴𝑦𝐵)} = ∅)
3 eleq1w 2814 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
4 eleq1w 2814 . . . . 5 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
53, 4anbi12d 632 . . . 4 (𝑦 = 𝑥 → ((𝑦𝐴𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵)))
65eqabcbw 2805 . . 3 ({𝑦 ∣ (𝑦𝐴𝑦𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
7 imnan 399 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
8 noel 4288 . . . . . 6 ¬ 𝑥 ∈ ∅
98nbn 372 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
107, 9bitr2i 276 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
1110albii 1820 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
122, 6, 113bitri 297 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
13 df-ral 3048 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
1412, 13bitr4i 278 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  cin 3901  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-dif 3905  df-in 3909  df-nul 4284
This theorem is referenced by:  disjr  4401  disj1  4402  disjne  4405  disjord  5080  disjiund  5082  otiunsndisj  5460  dfpo2  6243  onxpdisj  6433  f0rn0  6708  onint  7723  zfreg  9482  kmlem4  10042  fin23lem30  10230  fin23lem31  10231  isf32lem3  10243  fpwwe2  10531  renfdisj  11169  fvinim0ffz  13686  s3iunsndisj  14872  metdsge  24763  ssltdisj  27762  dfpth2  29705  2wspmdisj  30312  subfacp1lem1  35211  disjabso  45007  dvmptfprodlem  45981  stoweidlem26  46063  stoweidlem59  46096  iundjiunlem  46496  otiunsndisjX  47309  upgrimpths  47939
  Copyright terms: Public domain W3C validator