MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0ALT Structured version   Visualization version   GIF version

Theorem eq0ALT 4283
Description: Alternate proof of eq0 4282. Shorter, but requiring df-clel 2817, ax-8 2111. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2157, ax-12 2174. (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eq0ALT (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0ALT
StepHypRef Expression
1 dfcleq 2732 . 2 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
2 noel 4269 . . . 4 ¬ 𝑥 ∈ ∅
32nbn 372 . . 3 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
43albii 1825 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
51, 4bitr4i 277 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1539   = wceq 1541  wcel 2109  c0 4261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-dif 3894  df-nul 4262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator