| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axnulALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of axnul 5304, proved from propositional calculus, ax-gen 1794, ax-4 1808, sp 2182, and ax-rep 5278. To check this, replace sp 2182 with the obsolete axiom ax-c5 38885 in the proof of axnulALT 5303 and type the Metamath program "MM> SHOW TRACE_BACK axnulALT / AXIOMS" command. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axnulALT | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rep 5278 | . . 3 ⊢ (∀𝑤∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) | |
| 2 | sp 2182 | . . . . . 6 ⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) | |
| 3 | 2 | con2i 139 | . . . . 5 ⊢ (∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) |
| 4 | df-ex 1779 | . . . . 5 ⊢ (∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) | |
| 5 | 3, 4 | sylibr 234 | . . . 4 ⊢ (∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) → ∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥)) |
| 6 | fal 1553 | . . . . . 6 ⊢ ¬ ⊥ | |
| 7 | sp 2182 | . . . . . 6 ⊢ (∀𝑥⊥ → ⊥) | |
| 8 | 6, 7 | mto 197 | . . . . 5 ⊢ ¬ ∀𝑥⊥ |
| 9 | 8 | pm2.21i 119 | . . . 4 ⊢ (∀𝑥⊥ → 𝑦 = 𝑥) |
| 10 | 5, 9 | mpg 1796 | . . 3 ⊢ ∃𝑥∀𝑦(∀𝑥⊥ → 𝑦 = 𝑥) |
| 11 | 1, 10 | mpg 1796 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥)) |
| 12 | 8 | intnan 486 | . . . . . 6 ⊢ ¬ (𝑤 ∈ 𝑧 ∧ ∀𝑥⊥) |
| 13 | 12 | nex 1799 | . . . . 5 ⊢ ¬ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥) |
| 14 | 13 | nbn 372 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) |
| 15 | 14 | albii 1818 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) |
| 16 | 15 | exbii 1847 | . 2 ⊢ (∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ∃𝑤(𝑤 ∈ 𝑧 ∧ ∀𝑥⊥))) |
| 17 | 11, 16 | mpbir 231 | 1 ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ⊥wfal 1551 ∃wex 1778 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 ax-rep 5278 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |