MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0f Structured version   Visualization version   GIF version

Theorem eq0f 4340
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
eq0f (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)

Proof of Theorem eq0f
StepHypRef Expression
1 eq0f.1 . . 3 𝑥𝐴
2 nfcv 2902 . . 3 𝑥
31, 2cleqf 2933 . 2 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
4 noel 4330 . . . 4 ¬ 𝑥 ∈ ∅
54nbn 372 . . 3 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
65albii 1820 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
73, 6bitr4i 278 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1538   = wceq 1540  wcel 2105  wnfc 2882  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-dif 3951  df-nul 4323
This theorem is referenced by:  neq0f  4341  eq0OLDOLD  4347  ab0ALT  4376  bnj1476  34322  stoweidlem34  45209
  Copyright terms: Public domain W3C validator