MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0f Structured version   Visualization version   GIF version

Theorem eq0f 4370
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
eq0f (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)

Proof of Theorem eq0f
StepHypRef Expression
1 eq0f.1 . . 3 𝑥𝐴
2 nfcv 2908 . . 3 𝑥
31, 2cleqf 2940 . 2 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
4 noel 4360 . . . 4 ¬ 𝑥 ∈ ∅
54nbn 372 . . 3 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
65albii 1817 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
73, 6bitr4i 278 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535   = wceq 1537  wcel 2108  wnfc 2893  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-dif 3979  df-nul 4353
This theorem is referenced by:  neq0f  4371  ab0ALT  4404  bnj1476  34823  stoweidlem34  45955
  Copyright terms: Public domain W3C validator