| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eq0f | Structured version Visualization version GIF version | ||
| Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.) |
| Ref | Expression |
|---|---|
| eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| eq0f | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eq0f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑥∅ | |
| 3 | 1, 2 | cleqf 2927 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 4 | noel 4313 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 5 | 4 | nbn 372 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
| 7 | 3, 6 | bitr4i 278 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: neq0f 4323 ab0ALT 4356 bnj1476 34878 stoweidlem34 46063 |
| Copyright terms: Public domain | W3C validator |