Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eq0f | Structured version Visualization version GIF version |
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.) |
Ref | Expression |
---|---|
eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
eq0f | ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑥∅ | |
3 | 1, 2 | cleqf 2938 | . 2 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
4 | noel 4264 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
5 | 4 | nbn 373 | . . 3 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
6 | 5 | albii 1822 | . 2 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
7 | 3, 6 | bitr4i 277 | 1 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-dif 3890 df-nul 4257 |
This theorem is referenced by: neq0f 4275 eq0OLDOLD 4281 ab0ALT 4310 bnj1476 32827 stoweidlem34 43575 |
Copyright terms: Public domain | W3C validator |