MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0f Structured version   Visualization version   GIF version

Theorem eq0f 4271
Description: A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
eq0f (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)

Proof of Theorem eq0f
StepHypRef Expression
1 eq0f.1 . . 3 𝑥𝐴
2 nfcv 2906 . . 3 𝑥
31, 2cleqf 2937 . 2 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
4 noel 4261 . . . 4 ¬ 𝑥 ∈ ∅
54nbn 372 . . 3 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
65albii 1823 . 2 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
73, 6bitr4i 277 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wcel 2108  wnfc 2886  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-dif 3886  df-nul 4254
This theorem is referenced by:  neq0f  4272  eq0OLDOLD  4278  ab0ALT  4307  bnj1476  32727  stoweidlem34  43465
  Copyright terms: Public domain W3C validator